DOI QR코드

DOI QR Code

Surface morphology and deuterium retention in W and W-HfC alloy exposed to high flux D plasma irradiation

  • Yongkui Wang (School of Material and Chemical Engineering, Bengbu University) ;
  • Xiaochen Huang (School of Material and Chemical Engineering, Bengbu University) ;
  • Jiafeng Zhou (School of Material and Chemical Engineering, Bengbu University) ;
  • Jun Fang (School of Material and Chemical Engineering, Bengbu University) ;
  • Yan Gao (School of Material and Chemical Engineering, Bengbu University) ;
  • Jinlong Ge (School of Material and Chemical Engineering, Bengbu University) ;
  • Shu Miao (Guangdong Provincial Key Laboratory of Advanced Welding Technology, China-Ukraine Institute of Welding, Guangdong Academy of Sciences) ;
  • Zhuoming Xie (Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences)
  • Received : 2022.06.21
  • Accepted : 2022.10.11
  • Published : 2023.02.25

Abstract

In this work, pure W and W-0.5wt%HfC alloy (WHC05) were fabricated by sintering and hot-rolling following the same processing route. After exposing to a high flux deuterium plasma irradiation with the D+ flux to three fluences of 6.00 × 1024, 2.70 × 1025 and 7.02 × 1025 D/m2, the evolution of surface morphology, deuterium retention and hardening behaviors in pure W and WHC05 has been studied. The SEM results show the formation of D blisters on the irradiated area, and with the increase of D implantation, the size of these blisters increases from 200 ~ 500 nm (2.70 × 1025 D/m2) to 1 ~ 2 ㎛ (7.02 × 1025 D/m2) in WHC05 and from 1 ~ 2 ㎛ (2.70 × 1025 D/m2) to > 3 ㎛ (7.02 × 1025 D/m2) in pure W, respectively. A higher D retention and obvious hardening are observed in pure W than that of the WHC05 alloy, indicating an improve radiation resistance in WHC05 compared to pure W.

Keywords

Acknowledgement

The authors would like to thank Prof. G.H. Lv and Dr. L. Cheng for their supports with the D plasma exposure experiments in linear plasma device STEP at Beihang University. This work was financially supported by the National Key Research and Development Program of China (Grant No. 2019YFE03110200), the Bengbu University cultivation project (BBXY2019KYQD02, 2021pyxm07), Anhui Province Key R&D Program (202004a05020017), Anhui Provincial Department of Education Programs (KJ2021A1125, KJ2021A1127, KJ2021ZD0141), and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010828).

References

  1. N. Holtkamp, Fusion Engineering and Design 84 (2009) 98-105. https://doi.org/10.1016/j.fusengdes.2008.12.119
  2. A. Merola, J. Palmer, Fusion Engineering and Design 81 (2006) 105-111. https://doi.org/10.1016/j.fusengdes.2005.07.006
  3. M. Shimada, R. Pitts, A. Loarte, D.J. Campbell, M. Sugihara, V. Mukhovatov, A. Kukushkin, V. Chuyanov, Journal of Nuclear Materials 390 (2009) 282-285. https://doi.org/10.1016/j.jnucmat.2009.01.113
  4. P. Norajitra, L.V. Boccaccini, E. Diegele, et al., Journal of Nuclear Materials 329 (2004) 1594-1598. https://doi.org/10.1016/j.jnucmat.2004.04.137
  5. G.A. Cottrell, Materials science and technology 22 (8) (2006) 869-880. https://doi.org/10.1179/174328406X111110
  6. P. Norajitra, L.V. Boccaccini, A. Gervash, et al., Journal of Nuclear Materials 367 (2007) 1416-1421. https://doi.org/10.1016/j.jnucmat.2007.04.027
  7. J. Knaster, A. Moeslang, T. Muroga, Nature Physics 12 (2016) 424-434. https://doi.org/10.1038/nphys3735
  8. D.A. Buchenauer, et al., Gas-driven permeation of deuterium through tungsten and tungsten alloys, Fusion Engineering and Design 109-111 (2016) 104-108. https://doi.org/10.1016/j.fusengdes.2016.03.045
  9. F. Liu, et al., Gas-driven permeation of deuterium through tungsten with different microstructures, Fusion Engineering and Design 113 (2016) 216-220. https://doi.org/10.1016/j.fusengdes.2016.09.003
  10. X.X. Zhang, L. Qiao, H. Zhang, et al., Nuclear Materials and Energy 29 (2021), 101079. https://doi.org/10.1016/j.nme.2021.101079
  11. H. Kurishita, S. Matsuo, H. Arakawa, et al., Journal of Nuclear Materials 398 (2010) 87-92. https://doi.org/10.1016/j.jnucmat.2009.10.015
  12. M. Zibrov, et al., Journal of Nuclear Materials 463 (2015) 1045-1048. https://doi.org/10.1016/j.jnucmat.2014.11.112
  13. X.Y. Li, W. Liu, Y.C. Xu, C.S. Liu, Acta Mater 109 (2016) 115.
  14. Y.K. Wang, Z.M. Xie, et al., International Journal of Refractory Metals and Hard Materials 81 (2019) 42-48. https://doi.org/10.1016/j.ijrmhm.2019.02.018
  15. J.B. Condon, T. Schober, Journal of Nuclear Materials 207 (1993) 1.
  16. A.A. Haasz, M. Poon, J. Davis, Journal of Nuclear Materials 266-269 (1999) 520.
  17. S. Lindig, M. Balden, V.Kh. Alimov, T. Yamanishi, W.M. Shu, J. Roth, Phys. Scr. T138 (2009), 014040.
  18. M. Balden, S. Lindig, A. Manhard, J.-H. You, J. Nucl. Mater. 414 (2011) 69.
  19. G.N. Luo, W.M. Shu, M. Nishi, J. Nucl. Mater. 347 (1-2) (2005) 111-117. https://doi.org/10.1016/j.jnucmat.2005.07.014
  20. Y. Tan, Y.Y. Lian, F. Feng, et al., Journal of Nuclear Materials 509 (2018) 145-151. https://doi.org/10.1016/j.jnucmat.2018.06.022
  21. R. Liu, Z.M. Xie, J.F. Yang, et al., Nuclear Materials and Energy 16 (2018) 191-206. https://doi.org/10.1016/j.nme.2018.07.002
  22. W.M. Shu, M. Nakamichi, V. Kh. Alimov, et al., Journal of Nuclear Materials 390 (2009) 1017-1021. https://doi.org/10.1016/j.jnucmat.2009.01.267
  23. A. Manhard, U v Toussaint, T. Durbeck, et al., Physica Scripta T145 (2011), 014038.
  24. B. Tyburska-Puschel, K. Ertl, M. Mayer, et al., Nuclear Fusion 52 (2) (2012), 023008.
  25. Y. Yuan, W. Guo, P. Wang, et al., Nuclear Fusion 59 (1) (2018), 016022.
  26. A.V. Golubeva, M. Mayer, J. Roth, et al., Journal of nuclear materials 363 (2007) 893-897. https://doi.org/10.1016/j.jnucmat.2007.01.110
  27. Z. Harutyunyan, et al., Vacuum 199 (2022), 110956.
  28. Y. Gasparyan, et al., Journal of nuclear materials 417 (2011) 540-544. https://doi.org/10.1016/j.jnucmat.2010.12.119
  29. X.X. Zhang, L. Qiao, H. Zhang, et al., Nuclear Fusion 61 (4) (2021), 046026.
  30. X. Liu, R. Wang, A. Ren, et al., Journal of nuclear materials 444 (1-3) (2014) 1-6. https://doi.org/10.1016/j.jnucmat.2013.09.026