Acknowledgement
This work was supported by the A.I. Incubation Project Fund (1.220043.01) of UNIST(Ulsan national Institute of Science & Technology), and partly by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2021M2D2A1A03048950) and KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2020-Tech-17).
References
- K. Moshkbar-Bakhsayesh, M. Ghofrani, Transient identification in nuclear power plants: a review, Prog. Nucl. Energy 67 (2013) 23-32. https://doi.org/10.1016/j.pnucene.2013.03.017
- M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, Deep learning applications and challenges in big data analytics, Journal of Big Data 2 (2015) 1.
- H.M. Park, J.H. Lee, K, D. Kim, Wall temperature prediction at critical heat flux using a machine learning model, Ann. Nucl. Energy 141 (2020), 107334.
- T.V. Santosh, G. Vinod, R.K. Saraf, A.K. Ghosh, H.S. Kushwaha, Application of artificial neural networks to nuclear power plant transient diagnosis, Reliab. Eng. Syst. Saf. 92 (2007) 1468-1472. https://doi.org/10.1016/j.ress.2006.10.009
- H.A. Saeed, M. Peng, H. Wang, B. Zhang, Novel fault diagnosis scheme utilizing deep learning networks, Prog. Nucl. Energy 118 (2020), 103066.
- G. Lee, S.J. Lee, C. Lee, A convolutional neural network model for abnormality diagnosis in a nuclear power plant, Appl. Soft Comput. 99 (2020), 106874.
- S. Bagavathiappan, B.B. Lahiri, T. Saravanan, J. Philip, T. Jayakumar, Infrared thermography for condition monitoring - a review, Infrared Phys. Technol. 60 (2013) 35-55. https://doi.org/10.1016/j.infrared.2013.03.006
- S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, in: 2017 International Conference On Engineering And Technology (ICET), Antalya, Turkey, 2017.
- O. Janssens, R. Van de Walle, M. Loccufier, S. Van Hoecke, Deep learning for infrared thermal image based machine health monitoring, IEEE/ASME Transactions and Mechatronics 99 (2018) 151-159. https://doi.org/10.1109/TMECH.2017.2722479
- J.S. Kim, K.N. Choi, S.W. Kang, Infrared thermal image-based sustainable fault detection for electrical facilities, Sustainability 13 (2021) 557.
- A. Nasiri, A. Taheri-Garavand, M. Omid, G.M. Carlomagno, S.W. Kang, Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images, Appl. Therm. Eng. 163 (2019), 114410.
- J. Yang, W. Wang, G. Lin, Q. Li, Y. Sun, Y. Sun, Infrared thermal imaging-based crack detection using deep learning, in: IEEE Access, vol. 7, 2019, pp. 182060-182077. https://doi.org/10.1109/ACCESS.2019.2958264
- K.M. Kim, I.C. Bang, Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform, Nucl. Eng. Technol. 53 (2021) 776-792. https://doi.org/10.1016/j.net.2020.08.006
- M. Ishii, I. Kataoka, Scaling laws for thermal-hydraulic system under single phase and two-phase natural circulation, Nucl. Eng. Des. 81 (1984) 411-425. https://doi.org/10.1016/0029-5493(84)90287-5
- K.M. Kim, I.C. Bang, Integral Effect Test in Visualization Basis 3D Printed Test Facility for Improved Application of Innovative Technology, International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-18), Portland, USA, 2019.
- X.G. Yu, H.S. Park, Y.S. Kim, K.H. Kang, S. Cho, K.Y. Choi, Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint, Nucl. Eng. Des. 259 (2013) 205-220. https://doi.org/10.1016/j.nucengdes.2013.03.005
- K.H. Lee, B.U. Bae, Y.S. Kim, B.J. Yun, J.H. Chun, G.C. Park, An integral loop test and MARS code analysis for a DVI line break LOCA in the APR1400, Nucl. Eng. Des. 238 (2008) 3336-3347. https://doi.org/10.1016/j.nucengdes.2008.06.018
- S. Kim, H.Y. Jun, Analysis of an ATLAS 6-in. cold-leg break simulation with MARS code, Ann. Nucl. Energy 63 (2014) 268-275. https://doi.org/10.1016/j.anucene.2013.05.034
- S.Y. Park, K.I. Ahn, Comparative analysis of station blackout accident progression in typical PWR, BWR, and PHWR, Nucl. Eng. Technol. 44 (2012) 311-322. https://doi.org/10.5516/NET.03.2011.046
- A. Proꠑsek, L. Cizelj, Long-term station blackout accident analysis of a PWR with RELAP5/MOD3.3, Science and Technology of Nuclear Installations 2013 (2013), 851987.
- A. Canziani, A. Paszke, E. Culurciello, An Analysis of Deep Neural Network Models for Practical Application, 2016, 07678 arXiv preprint arXic:1605.
- A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks? Communications of the ACM 60 (6) (2012) 84-90. https://doi.org/10.1145/3065386
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR), Boston, USA, 2015.
- K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 arXiv:1409.1556.
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, 2016.
- G. Huang, Z. Liu, L. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR), Honolulu, Hawaii, 2017.
- S. Ruder, An Overview of Gradient Descent Optimization Algorithms, 2016 arXiv preprint arXiv:1609.04747.
- C. Sammut, G.I. Webb (Eds.), Encyclopedia of Machine Learning, Springer, New York, 2011.
- M. Vakili, M. Ghamsari, M. Rezaei, Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification, 2020 arXiv preprint arXiv:2001.09636.
- R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618-626.