DOI QR코드

DOI QR Code

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University) ;
  • Zehua Li (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University) ;
  • Pengfei Wang (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University) ;
  • G.H. Su (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University) ;
  • Jiashuang Wan (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University)
  • 투고 : 2022.08.14
  • 심사 : 2022.10.06
  • 발행 : 2023.02.25

초록

A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

키워드

과제정보

This research is supported by the National Natural Science Foundation of China (Grant No. 12005161, 12105216).

참고문헌

  1. G. Xia, M. Peng, X. Du, Analysis of load-following characteristics for an integrated pressurized water reactor, Int. J. Energy Res. 38 (3) (2014) 380-390. https://doi.org/10.1002/er.3053
  2. Z. Liu, J. Fan, Technology readiness assessment of small modular reactor (SMR) designs, Prog. Nucl. Energy 70 (2014) 20-28. https://doi.org/10.1016/j.pnucene.2013.07.005
  3. Q. Liang, X. Li, Y. Su, X. Wu, Frequency domain analysis of two-phase flow instabilities in a helical tube once through steam generator for HTGR, Appl. Therm. Eng. 168 (2020), 114839.
  4. A.V. Zrodnikov, G.I. Toshinsky, O.G. Komlev, V.S. Stepanov, N.N. Klimov, SVBR100 module-type fast reactor of the IV generation for regional power industry, J. Nucl. Mater. 415 (3) (2011) 237-244. https://doi.org/10.1016/j.jnucmat.2011.04.038
  5. M.-H. Lee, Nonlinear Dynamic Modeling of a Once-Through Steam Generator, 1978.
  6. C.K. Sanathanan, A.A. Sandberg, F.H. Clark, O.W. Burke, R.S. Stone, Dynamic modeling of a large once-through steam generator, Nucl. Eng. Des. 23 (3) (1972) 321-330. https://doi.org/10.1016/0029-5493(72)90153-7
  7. A.T.-l. Chen, A DIGITAL SIMULATION FOR NUCLEAR ONCE-THROUGH STEAM GENERATORS, The University of Tennessee, 1976.
  8. A. Ray, H. Bowman, A Nonlinear Dynamic Model of a Once-Through Subcritical Steam Generator, 1976.
  9. A. Ray, Dynamic modelling of once-through subcritical steam generator for solar applications11This work was done while the author was at CarnegieMellon University, Pittsburgh, PA, USA, Appl. Math. Model. 4 (6) (1980) 417-423. https://doi.org/10.1016/0307-904X(80)90173-0
  10. C.P. Tzanos, A movable boundary model for once-through steam generator analysis, Nucl. Technol. 82 (1) (1988) 5-17. https://doi.org/10.13182/NT88-A34113
  11. M.A. Abdalla, A four-region, moving-boundary model of a once-through, helical-coil steam generator, Ann. Nucl. Energy 21 (9) (1994) 541-562. https://doi.org/10.1016/0306-4549(94)90078-7
  12. H. Li, X. Huang, L. Zhang, A lumped parameter dynamic model of the helical coiled once-through steam generator with movable boundaries, Nucl. Eng. Des. 238 (7) (2008) 1657-1663. https://doi.org/10.1016/j.nucengdes.2008.01.009
  13. Z. Dong, X. Huang, L. Zhang, Saturated output feedback dissipation steam temperature control for the OTSG of MHTGRs, IEEE Trans. Nucl. Sci. 58 (3) (2011) 1277-1289. https://doi.org/10.1109/TNS.2011.2142192
  14. Z. Dong, A differential-algebraic model for the once-through steam generator of MHTGR-based multimodular nuclear plants, Math. Probl Eng. 2015 (2015) 1-12. https://doi.org/10.1155/2015/370101
  15. J. Yoon, J.-P. Kim, H.-Y. Kim, D.J. Lee, M.H. Chang, Development of a computer code, ONCESG, for the thermal-hydraulic design of a once-through steam generator, J. Nucl. Sci. Technol. 37 (5) (2000) 445-454. https://doi.org/10.1080/18811248.2000.9714917
  16. S.E. Arda, K.E. Holbert, Nonlinear dynamic modeling and simulation of a passively cooled small modular reactor, Prog. Nucl. Energy 91 (2016) 116-131. https://doi.org/10.1016/j.pnucene.2016.03.033
  17. G. Xia, Y. Yuan, M. Peng, X. Lv, L. Sun, Numerical studies of a helical coil oncethrough steam generator, Ann. Nucl. Energy 109 (2017) 52-60. https://doi.org/10.1016/j.anucene.2017.05.025
  18. Y. Wu, B. Liu, H. Zhang, K. Zhu, B. Kong, J. Guo, et al., Accuracy and efficient solution of helical coiled once-through steam generator model using JFNK method, Ann. Nucl. Energy 159 (2021), 108290.
  19. H. Yao, G. Chen, K. Lu, Y. Wu, W. Tian, G. Su, et al., Study on the systematic thermal-hydraulic characteristics of helical coil once-through steam generator, Ann. Nucl. Energy 154 (2021), 108096.
  20. H. Ding, Y. Zhang, K. Ye, G. Hong, Development of a model for thermalhydraulic analysis of helically coiled tube once-through steam generator based on Modelica, Ann. Nucl. Energy 137 (2020), 107069.
  21. K. Ye, Y. Zhang, X. Sheng, N. Li, Y. Yang, Y. Chen, Numerical analysis of the flow behavior in a helically coiled once through steam generator, Nucl. Eng. Des. 330 (2018) 187-198. https://doi.org/10.1016/j.nucengdes.2018.01.031
  22. E.F. Schmidt, Warmeubergang und druckverlust in rohrschlangen, Chem.- Ing.-Tech. 39 (13) (1967) 781-789. https://doi.org/10.1002/cite.330391302
  23. F. Bianchi, R. Ferri, SPES3-IRIS Facility RELAP5 Sensitivity Analyses on the Containment System for Design Review, ENEA Ricerca Sistema Elettrico, Piacenza, Italy, 2010. Report No. NNFISS-LP2-017.
  24. C. Galvez, Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors, University of California, Berkeley, 2011.
  25. A. Del Nevo, Deterministic Safety Analysis of Station Blackout Postulated Accident on the Basis of the SMR Simulator MASLWR, 2012.