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DIFFERENTIAL EQUATIONS CONTAINING 2-VARIABLE

MIXED-TYPE HERMITE POLYNOMIALS

J.Y. KANG

Abstract. In this paper, we introduce the 2-variable mixed-type Hermite

polynomials and organize some new symmetric identities for these polyno-
mials. We find induced differential equations to give explicit identities of

these polynomials from the generating functions of 2-variable mixed-type

Hermite polynomials.
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1. Introduction

The ordinary Hermite numbers Hn and Hermite polynomials Hn(v) are usu-
ally defined by the generating functions

et(2v−t) =

∞∑
n=0

Hn(v)
tn

n!

and

e−t2 =

∞∑
n=0

Hn
tn

n!
.

Clearly, Hn = Hn(0).
It can be seen that these numbers and polynomials play an important role

in various fields of mathematics, applied mathematics, and physics, including
number theory, combinations, special functions, and differential equations. Var-
ious interesting properties about them are obtained, see [1]-[5]. The ordinary
Hermite polynomials Hn(u) satisfy the Hermite differential equation

d2H(v)

dv2
− 2v

dH(v)

dv
+ 2nH(v) = 0, n = 0, 1, 2, . . . .
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We recall that the 2-variable Hermite polynomials Hn(v, w) defined by the gen-
erating function(see [2])

∞∑
n=0

Hn(v, w)
tn

n!
= et(v+wt) (1)

are the solution of heat equation

∂

∂w
Hn(v, w) =

∂2

∂v2
Hn(v, w), Hn(v, 0) = vn. (2)

Observe that

Hn(2v,−1) = Hn(v).

Motivated by their importance and potential for applications in certain problems
in probability, combinatorics, number theory, differential equations, numerical
analysis and other areas of mathematics and physics, several kinds of some spe-
cial numbers and polynomials were recently studied by many authors, see [1, 2,
3, 4, 5, 6, 7, 8]. Many mathematicians have studied the area of the degenerate
Bernoulli polynomials, degenerate Euler polynomials, degenerate Genocchi poly-
nomials, and degenerate tangent polynomials, see [ 6, 7, 8, 10]. Mathematicians
are recently interested in studying Hermit polynomials through various methods
such as Hermit polynomials combined with q-numbers or (p, q)-numbers, degen-
erated Hermit polynomials, and so on. Furthermore, studies to define a new type
of polynomial in which polynomials are combined with polynomials and finding
properties and structures of their roots began appearing. A new type of research
that combines Hermit polynomials with degenerated Hermit polynomials is an
example. Mixed-type Hermit polynomials, which differ from the results of stud-
ies of [12], will be introduced. In this paper, we can see the properties related
to the mixed-type Hermit polynomials and mixed-type Hermit polynomials is a
solution of differential equation of certain initial value problems.

In [13], Hwang and Ryoo proposed the 2-variable degenerate Hermite poly-
nomials Hn(v, w, λ) by means of the generating function

∞∑
n=0

Hn(v, w, λ)
tn

n!
= (1 + λ)

vt+ wt2

λ . (3)

Since (1 + λ)
t
λ → et as λ → 0, it is evident that (3) reduces to (1). The 2-

variable degenerate Hermite polynomials Hn(v, w, λ) in generating function (3)
are the solution of equation(

log(1 + λ)

λ

)
∂

∂v
Hn(v, w, λ) =

∂2

∂v2
Hn(v, w, λ),

Hn(v, 0, λ) =

(
λ

log(1 + λ)

)n

vn.

(4)
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Since
λ

log(1 + λ)
→ 1 as λ approaches to 0, it is apparent that (4) descends to

(2).
The differential equations arising from the generating functions of special

numbers and polynomials were also studied, see [10-16]. Hermit polynomials are
well known as they play a very important role in mathematical and physical engi-
neering fields. When λ → 1, the mixed-type Hermit polynomials become Hermit
polynomials. Therefore, the study of mixed-type Hermit polynomials is one of
the important studies to understand the characteristics of Hermit polynomials.

There are several important goals of this paper. We construct 2-variable
mixed-type Hermit polynomials and check their symmetric properties. We also
find the symmetrical properties of these polynomials related to tangent numbers.
We introduce some new differential equations from the generating functions of
2-variable mixed-type Hermit polynomials.

This paper is organized as follows. In Section 2, we construct the 2-variable
mixed-type Hermite polynomials and obtain basic properties of these polyno-
mials. We derive some symmetric identities for 2-variable mixed-type Hermite
polynomials. In Section 3, we introduce the differential equations generated
from the generating function of 2-variable mixed-type Hermite polynomials. Us-
ing the coefficients of this differential equation, we have explicit identities for
the 2-variable mixed-type Hermite polynomials.

2. Basic properties for the 2-variable mixed-type Hermite
polynomials

In this section, a new class of the 2-variable mixed-type Hermite polynomials
are considered. Furthermore, some properties of these polynomials are also
obtained.

We define the 2-variable mixed-type Hermite polynomialsHn(u, v, λ) by means
of the generating function

∞∑
n=0

Hn(u, v, λ)
tn

n!
= eut(1 + λt2)

v

λ . (5)

Since (1+λt2)
v
λ → evt

2

as λ → 0, it is evident that (5) reduces to (1). Observe
that degenerate Hermite polynomials Hn(u, v, λ) and 2-variable mixed-type Her-
mite polynomials Hn(u, v, λ) are completely different.

Now, we recall the λ-analogue of the falling factorial sequences as follows:

(w|λ)0 = 1, (w|λ)n = w(w − λ)(w − 2λ) · · · (w − (n− 1)λ), (n ≥ 1).

Note that

lim
λ→1

(w|λ)n = w(w − 1)(w − 2) · · · (w − (n− 1)) = (w)n, (n ≥ 1).
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For a variable w, we get

(1 + λt2)
w
λ =

∞∑
m=0

(w
λ

)
m

t2m

m!

=

∞∑
m=0

(w|λ)m
t2m

m!
.

(6)

We remember that the classical Stirling numbers of the first kind S1(n, k) and
the second kind S2(n, k) are defined by the relations(see [6-13])

(w)n =

n∑
k=0

S1(n, k)w
k and wn =

n∑
k=0

S2(n, k)(w)k,

respectively. We also have
∞∑

n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
and

∞∑
n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (7)

The generating function (5) is useful for deriving several properties of the
2-variable mixed-type Hermite polynomials Hn(u, v, λ).

For example, we have the following expression for these polynomials:

Theorem 2.1. For any positive integer n, we have

Hn(u, v, λ) =

[n2 ]∑
k=0

un−2k(v|λ)k
n!

k!(n− 2k)!
,

where [ ] denotes the integer part.

Proof. By (6) and (7), we have

∞∑
n=0

Hn(u, v, λ)
tn

n!
= eut(1 + λt2)

v

λ =

∞∑
k=0

uk t
k

k!

∞∑
l=0

(v|λ)l
t2l

l!

=

∞∑
n=0

 [n2 ]∑
k=0

un−2k(v|λ)k
n!

k!(n− 2k)!

 tn

n!
.

On comparing the coefficients of tn

n! , the expected result of Theorem 2.1 is
achieved. □

Since limλ→0(v|λ)n = vn, (n ≥ 1), we get

Hn(u, v) = n!

[n2 ]∑
k=0

vkun−2k

k!(n− 2k)!
.

The following basic properties of the 2-variable mixed-type Hermite polyno-
mials Hn(u, v, λ) are derived form (5). We, therefore, choose to omit the details
involved.
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Theorem 2.2. For any positive integer n, we have

(1) Hn(u, v, λ) =

[n2 ]∑
k=0

k∑
l=0

S1(k, l)λ
k−lvlun−2k n!

k!(n− 2k)!
.

(2) Hn(u1 + u2, v, λ) =

n∑
l=0

(
n

l

)
ul
2Hn−l(u1, v, λ).

(3) Hn(u, v1 + v2, λ) =

[n2 ]∑
k=0

Hk(u, v1, λ)(v2|λ)n−2k
n!

k!(n− 2k)!
.

(4) Hn(u, v1 + v2, λ) =

[n2 ]∑
k=0

k∑
l=0

Hn−2k(u, v1, λ)S1(k, l)v
l
2λ

k−l.

(5) Hn(u1 + u2, v1 + v2, λ) =

n∑
l=0

(
n

l

)
Hl(u1, v1, λ)Hn−l(u2, v2, λ).

Theorem 2.3. For n = 0, 1, ..., 2-variable mixed-type Hermite polynomials
Hn(u, v, λ) with the generating function (5) are the solution of the differential
equation (

uλ
∂3

∂u3
− ((n− 2)λ− 2v)

∂2

∂u2
+ u

∂

∂u
− n

)
Hn(u, v, λ) = 0,

Hn(u, 0, λ) = un.

Hn(0, v, λ) =

(v|λ)k
(2k)!

k!
, if n = 2k,

0, otherwise.

Proof. We see that

G(t, u, v|λ) = eut(1 + λt2)

v

λ

satisfies

∂G(t, u, v|λ)
∂t

−
(
u+

2vt

1 + λt2

)
G(t, u, v|λ) = 0.

By substituting the series (5) for G(t, u, v|λ), one obtains

Hn+1(u, v, λ)− uHn(x, y, z|µ) + (n(n− 1)λ− 2vn)Hn−1(u, v, λ)

− n(n− 1)uλHn−2(u, v, λ) = 0, n = 2, 3, . . .
(8)

We get a recurrence relation for 2-variable mixed-type Hermite polynomials
Hn(u, v, λ) and another recurrence relation which comes from

∂G(t, u, v|λ)
∂u

− tG(t, u, v|λ) = 0.
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This implies

∂Hn(u, v, λ)

∂u
− nHn−1(u, v, λ) = 0, n = 1, 2, . . . ,

∂2Hn(u, v, λ)

∂u2
− n(n− 1)Hn−2(u, v, λ) = 0, n = 2, 3, . . . .

(9)

Eliminate Hn−1(u, v, λ) and Hn−2(u, vλ) from (8)–(9) in order to obtain

Hn+1(u, v, λ)−uHn(u, v, λ)+((n−1)λ−2v)
∂Hn(u, vλ)

∂u
−uλ

∂2Hn(u, v, λ)

∂u2
= 0.

(10)
Differentiate this equation and use (9) again to get

uλ
∂3Hn(u, v, λ)

∂u3
− ((n− 2)− 2v)

∂2Hn(u, v, λ)

∂u2
+ uHn(u, v, λ)

− nHnu, v, λ) = 0, (n = 0, 1, . . .),

thus, we proved the theorem. □

Theorem 2.4. For n = 0, 1, ..., 2-variable mixed-type Hermite polynomials
Hn(u, v, λ) with the generating function (5) are the solution of the differential
equation

∂2

∂u∂v
Hn(u, v, λ)−

[n−2
2 ]∑

l=0

(−1)lλl

(l + 1)

∂

∂v
Hn−2l−2(u, v, λ)

n!

(n− 2l − 2)!
= 0,

∂Hn(u, v, λ)

∂v
−

[n−2
2 ]∑

k=0

(−1)kλkn!

(k + 1)(n− 2k − 2)!
Hn−2k−2(u, v, λ) = 0,

Hn(u, 0, λ) = un.

Hn(0, v, λ) =

(v|λ)k
(2k)!

k!
, if n = 2k,

0, otherwise.

Proof. Since

∂G(t, u, v|λ)
∂v

− log(1 + λt2)

λ
G(t, u, v|λ) = 0,

we get

∂Hn(u, v, λ)

∂v
=

[n−2
2 ]∑

k=0

(−1)kλkn!

(k + 1)(n− 2k − 2)!
Hn−2k−2(u, v, λ).

Note that

G(t, u, v|λ) = eut(1 + λt2)

v

λ
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satisfies
∂2G(t, u, v|λ)

∂u∂v
− log(1 + λt2)

λ

∂G(t, u, v|λ)
∂u

= 0. (11)

Substitute the series in (11) for G(t, u, v|λ) to obtain

∂2

∂u∂v
Hn(u, v, λ)−

[n−2
2 ]∑

k=0

(−1)kλkn!

(k + 1)(n− 2k − 2)!

∂

∂v
Hn−2k−2(u, v, λ) = 0.

Thus the 2-variable mixed-type degenerate Hermite polynomials Hn(u, v, λ) in
generating function (5) are the solution of equation

∂2

∂u∂v
Hn(u, v, λ) =

[n−2
2 ]∑

l=0

(−1)lλl

(l + 1)

∂

∂v
Hn−2l−2(u, v, λ)

n!

(n− 2l − 2)!
.

One can obtain the desired results immediately. □

3. Symmetric identities for the 2-variable mixed-type Hermite
polynomials

In this section, we share some new symmetric identities for the 2-variable
mixed-type Hermite polynomials. We also introduce several explicit formulas
and properties for the 2-variable mixed-type Hermite polynomials.

Theorem 3.1. Let w1, w2 > 0 and w1 ̸= w2. The following identity holds true:

wm
1 Hm

(
w2u,w

2
2v,

λ

w2
1

)
= wm

2 Hm

(
w1u,w

2
1v,

λ

w2
2

)
.

Proof. Let w1, w2 > 0 and w1 ̸= w2. We start with

G(t, λ) = ew1w2ut(1 + λt2)

w2
1w

2
2v

λ .

Then the expression for G(t, λ) is symmetric in w1 and w2

G(t, λ) =

∞∑
n=0

Hn

(
w1u,w

2
1v,

λ

w2
2

)
(w2t)

n

n!
=

∞∑
n=0

wn
2Hn

(
w1u,w

2
1v,

λ

w2
2

)
tn

n!
.

On the similar lines, we obtain that

G(t, λ) =

∞∑
n=0

Hn

(
w2u,w

2
2v,

λ

w2
1

)
(w1t)

n

n!
=

∞∑
n=0

wn
1Hn

(
w2u,w

2
2v,

λ

w2
1

)
tn

n!
.

Comparing the coefficients of
tn

n!
in last two equations, the expected result of

Theorem 3.1 is achieved. □

For each integer k ≥ 0 and n ≥ 1, the alternating even sum is defined by

τk(n) =

n∑
i=0

(−1)i(2i)k
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and the generating function is

∞∑
k=0

τk(n)
tk

k!
=

1− (−e2t)n+1

1 + e2t
.

Ryoo has introduced the tangent polynomials given by the generating function
as

∞∑
n=0

Tn(u)
tn

n!
=

2

e2t + 1
eut.

When u = 0 and Tn = Tn(0), Tn are called the tangent numbers (see [8, 9]).

Theorem 3.2. Let w1, w2 > 0 and w1 ̸= w2. If w1 and w2 have the same parity,
then we have

n∑
i=0

i∑
m=0

(
n

i

)(
i

m

)
wi

1w
n−i
2 TmHi−m

(
w2u,w

2
2v,

λ

w2
1

)
τn−i(w1 − 1)

=

n∑
i=0

i∑
m=0

(
n

i

)(
i

m

)
wi

2w
n−i
1 TmHi−m

(
w1u,w

2
1v,

λ

w2
2

)
τn−i(w2 − 1).

Proof. For integers n ≥ 0, w1 ≥ 1 and w2 ≥ 1, we now use

F (t, µ) =
2ew1w2ut(1 + λt2)

w2
1w

2
2v

λ
(
1− (−e2t)w1w2

)
(e2w1t + 1) (e2w2t + 1)

.

From F (t, µ), we get the following result:

F (t, µ)

=
2ew1w2ut(1 + λt2)

w2
1w

2
2v

λ
(
1− (−e2t)w1w2

)
(e2w1t + 1) (e2w2t + 1)

=
2

(e2w1t + 1)
ew1w2ut(1 + λt2)

w2
1w

2
2v

λ

(
1− (−e2t)w1w2

)
(e2w2t − 1)

=

∞∑
n=0

Tn
(w1t)

n

n!

∞∑
n=0

Hn

(
w2u,w

2
2v,

λ

w2
1

)
(w1t)

n

n!

∞∑
n=0

τn(w1 − 1)
(w2t)

n

n!

=

∞∑
n=0

(
n∑

i=0

i∑
m=0

(
n

i

)(
i

m

)
wi

1w
n−i
2 TmHi−m

(
w2u,w

2
2v,

λ

w2
1

)
τn−i(w1 − 1)

)
tn

n!
.
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In a similar fashion we have

F (t, λ)

=
2

(e2w2t + 1)
ew1w2ut(1 + λt2)

w2
1w

2
2v

λ

(
1− (−e2t)w1w2

)
(e2w1t + 1)

=

∞∑
n=0

Tn
(w2t)

n

n!

∞∑
n=0

Hn

(
w1u,w

2
1v,

λ

w2
2

)
(w2t)

n

n!

∞∑
n=0

τn (w2 − 1)
(w1t)

n

n!

=

∞∑
n=0

(
n∑

i=0

i∑
m=0

(
n

i

)(
i

m

)
wi

2w
n−i
1 TmHi−m

(
w1u,w

2
1v,

λ

w2
2

)
τn−i(w2 − 1)

)
tn

n!
.

Comparing the coefficients of
tn

n!
on the right hand sides of the last two equations

gives us the desired identity. □

Corollary 3.3. Let w1, w2 > 0 and w1 ̸= w2. Then, the following identity holds
true:

n∑
i=0

i∑
m=0

(
n

i

)(
i

m

)
wi

1w
n+1−i
2 TmHi−m(w2u,w

2
2v)τn−i(w1 − 1)

=

n∑
i=0

i∑
m=0

(
n

i

)(
i

m

)
wi

2w
n+1−i
1 TmHi−m(w1u,w

2
1v)τn−i(w2 − 1).

Proof. Taking the limit as λ → 0 gives the desired result. □
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