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Abstract. This paper aims to apply the concept of Pythagorean fuzzy soft

sets (PFSSs) to UP-algebras. Then we introduce five types of PFSSs over

UP-algebras, study their generalization, and provide illustrative examples.
In addition, we study the results of four operations of two PFSSs over UP-

algebras, namely, the union, the restricted union, the intersection, and the
extended intersection. Finally, we will also discuss t-level subsets of PFSSs

over UP-algebras to study the relationships between PFSSs and special

subsets of UP-algebras.
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1. Introduction and Preliminaries

The concept of fuzzy sets (FSs) was first considered by Zadeh [42] in 1965.
Zadeh’s and others’ FS concepts have found numerous applications in mathe-
matics and other fields. Following the introduction of the concept of FSs, various
researchers were interviewed about generalizations of the concept of FSs, includ-
ing: Atanassov [3] defined a new concept called an intuitionistic fuzzy set (IFS)
which is a generalization of a FS, Torra and Narukawa [38, 37] introduced the
notion of hesitant fuzzy sets (HFS). Yager [40] introduced a new class of non-
standard fuzzy subsets called a Pythagorean fuzzy set (PFS) and the related
idea of Pythagorean membership grades.

In 1999, to solve complicated problems in economics, engineering, and envi-
ronment, we cannot successfully use classical methods because of various un-
certainties typical for those problems. Uncertainties cannot be handled using
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traditional mathematical tools but may be dealt with using a wide range of ex-
isting theories such as the probability theory, the theory of (intuitionistic) fuzzy
sets, the theory of vague sets, the theory of interval mathematics, and the theory
of rough sets. However, all of these theories have their own difficulties which
are pointed out in [17]. In 2001, Maji et al. [16] introduced the concept of
fuzzy soft sets as a generalization of the standard soft sets, and presented an
application of fuzzy soft sets in a decision making problem. In 2013, Rehman
et al. [22] studied properties of fuzzy soft sets and their interrelation with re-
spect to different operations such as union, intersection, restricted union and
extended intersection. Then, they illustrate properties of AND and OR oper-
ations by giving counter examples. In 2015, Peng et al. [20] introduced the
concept of PFSSs and defined the operations such as complement, union, in-
tersection, and, or, addition, multiplication, necessity, and possibility. In 2017,
Satirad et al. [32] discussed the relationships among (prime, weakly prime)
hesitant fuzzy UP-subalgebras (resp., hesitant fuzzy UP-filters, hesitant fuzzy
UP-ideals and hesitant fuzzy strongly UP-ideals) and some level subsets of a
HFS on UP- algebras. In 2018, Satirad et al. [26] introduced eight types of
subsets and of fuzzy sets of fully UP-semigroups, and investigate the algebraic
properties of fuzzy sets under the operations of intersection and union. In 2019,
Satirad and Iampan [27, 28] introduced ten types of fuzzy soft sets over fully
UP-semigroups, and investigate the algebraic properties of fuzzy soft sets un-
der the operations of (extended) intersection and (restricted) union. Jana et al.
[14] used Dombi operations to create a few Pythagorean fuzzy Dombi aggrega-
tion operators. Additionally, by examining the book [13], they also presented
recent research examining the theoretical and practical elements of fuzzy set the-
ory and its actual applications in the disciplines of engineering and science. In
2020, Touqeer [39] introduced the notion of intuitionistic fuzzy soft α-ideals in
BCI-algebras, described connections between various types of intuitionistic fuzzy
soft α-ideals and intuitionistic fuzzy soft ideals and characterized using the idea
of soft (δ, η)-level set. In 2022, Satirad et al. [25, 24] applied the concept of
rough sets to PFSs in UP-algebras and studied the relationships between rough
Pythagorean fuzzy sets and rough sets in UP-algebras under analyzing t-level
subsets of rough Pythagorean fuzzy sets. Palanikumar et al. [19] presented a
communication which deals with some new methods to solve multiple attribute
decision-making problems based on Pythagorean neutrosophic normal interval-
valued set. Jana et al. [10] solved the Pythagorean fuzzy multiple attribute
decision making problem by using Pythagorean fuzzy power Dombi weighted
averaging and Pythagorean fuzzy power Dombi weighted geometric operators to
design an algorithm for the proposed approach.

In this paper, we apply the concept of PFSSs to UP-algebras and intro-
duce five types of them, namely, Pythagorean fuzzy soft UP-subalgebras (PF-
SUPSs), Pythagorean fuzzy soft near UP-filters (PFSNUPFs), Pythagorean
fuzzy soft UP-filters (PFSUPFs), Pythagorean fuzzy soft UP-ideals (PFSUPIs),
and Pythagorean fuzzy soft strong UP-ideals (PFSSUPIs). Then we study the
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operations on five types of PFSSs such as the union, the restricted union, the
extended intersection, and the intersection. Moreover, we investigate t-level
subsets of PFSSs over UP-algebras in order to discuss the relationships between
PFSSs and special subset of UP-algebras.

First, let’s review the definition of UP-algebras.

Definition 1.1. [6] A UP-algebra is one that has the algebra U = (U , ⋆, 0) of
type (2, 0), where U is a nonempty set, ⋆ is a binary operation on U , and 0 is a
fixed element of U if it meets the following axioms:

(∀u, v, w ∈ U)((v ⋆ w) ⋆ ((u ⋆ v) ⋆ (u ⋆ w)) = 0), (UP-1)

(∀u ∈ U)(0 ⋆ u = u), (UP-2)

(∀u ∈ U)(u ⋆ 0 = 0), (UP-3)

(∀u, v ∈ U)(u ⋆ v = 0, v ⋆ u = 0 ⇒ u = v). (UP-4)

For more examples of UP-algebras, see [1, 2, 4, 7, 9, 18, 30, 31, 29, 33, 34].
According to [6], we know that the concept of UP-algebras is a generalization

of KU-algebras (see [21]).
Unless otherwise indicated, we will assume that U is a UP-algebra (U , ⋆, 0).
In U , the following assertions are valid (see [6, 7]).

(∀u ∈ U)(u ⋆ u = 0), (1.1)

(∀u, v, w ∈ U)(u ⋆ v = 0, v ⋆ w = 0 ⇒ u ⋆ w = 0), (1.2)

(∀u, v, w ∈ U)(u ⋆ v = 0 ⇒ (w ⋆ u) ⋆ (w ⋆ v) = 0), (1.3)

(∀u, v, w ∈ U)(u ⋆ v = 0 ⇒ (v ⋆ w) ⋆ (u ⋆ w) = 0), (1.4)

(∀u, v, w ∈ U)(u ⋆ (v ⋆ u) = 0, in particular, (v ⋆ w) ⋆ (u ⋆ (v ⋆ w)) = 0), (1.5)

(∀u, v ∈ U)((v ⋆ u) ⋆ u = 0 ⇔ u = v ⋆ u), (1.6)

(∀u, v ∈ U)(u ⋆ (v ⋆ v) = 0), (1.7)

(∀a, u, v, w ∈ U)((u ⋆ (v ⋆ w)) ⋆ (u ⋆ ((a ⋆ v) ⋆ (a ⋆ w))) = 0), (1.8)

(∀a, u, v, w ∈ U)((((a ⋆ u) ⋆ (a ⋆ v)) ⋆ w) ⋆ ((u ⋆ v) ⋆ w) = 0), (1.9)

(∀u, v, w ∈ U)(((u ⋆ v) ⋆ w) ⋆ (v ⋆ w) = 0), (1.10)

(∀u, v, w ∈ U)(u ⋆ v = 0 ⇒ u ⋆ (w ⋆ v) = 0), (1.11)

(∀u, v, w ∈ U)(((u ⋆ v) ⋆ w) ⋆ (u ⋆ (v ⋆ w)) = 0), (1.12)

(∀a, u, v, w ∈ U)(((u ⋆ v) ⋆ w) ⋆ (v ⋆ (a ⋆ w)) = 0). (1.13)

According to [6], the binary relation ≤ on U is defined as follows:

(∀u, v ∈ U)(u ≤ v ⇔ u ⋆ v = 0).

Definition 1.2. [5, 6, 8, 36] A nonempty subset S of U is called

(1) a UP-subalgebra (UPS) of U if it satisfies the following condition:

(∀u, v ∈ S)(u ⋆ v ∈ S), (1.14)
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(2) a near UP-filter (NUPF) of U if it satisfies the following condition:

(∀u, v ∈ U)(v ∈ S ⇒ u ⋆ v ∈ S), (1.15)

(3) a UP-filter (UPF) of U if it satisfies the following conditions:

the constant 0 of U is in S, (1.16)

(∀u, v ∈ U)(u ⋆ v ∈ S, u ∈ S ⇒ v ∈ S), (1.17)

(4) a UP-ideal (UPI) of U if it satisfies the condition (1.16) and the following
condition:

(∀u, v, w ∈ U)(u ⋆ (v ⋆ w) ∈ S, v ∈ S ⇒ u ⋆ w ∈ S), (1.18)

(5) a strong UP-ideal (SUPI) of U if it satisfies the condition (1.16) and the
following condition:

(∀u, v, w ∈ U)((w ⋆ v) ⋆ (w ⋆ u) ∈ S, v ∈ S ⇒ u ∈ S). (1.19)

From [5, 6, 8, 36] allows us to know that the concept of UPSs is a generalization
of NUPFs, NUPFs is a generalization of UPFs, UPFs is a generalization of UPIs,
and UPIs is a generalization of SUPIs. They also proved that U is the only SUPI.

Definition 1.3. [42] A fuzzy set (FS) F in a nonempty set U is described by its
membership function µF. To every point u ∈ U , this function associates a real
number µF(u) in the closed interval [0, 1]. The real number µF(u) is interpreted
for the point as a degree of membership of an object u ∈ U to the FS F, that is,
F := {(u, µF(u)) | u ∈ U}. We say that a FS F in U is constant fuzzy set if its
membership function µF is constant.

In 2013, Yager [40], and Yager and Abbasov [41] introduced the concept of
PFSs for the first time.

Definition 1.4. [40, 41] A Pythagorean fuzzy set (PFS) P in a nonempty set U
is described by their membership function µP and non-membership function νP.
To every point u ∈ U , these functions associate real numbers µP(u) and νP(u)
in the closed interval [0, 1], with the following condition:

(∀u ∈ U)(0 ≤ µP(u)
2 + νP(u)

2 ≤ 1). (1.20)

The real numbers µP(u) and νP(u) are interpreted for the point as a degree of
membership and non-membership of an object u ∈ U , respectively, to the PFS
P, that is, P := {(u, µP(u), νP(u)) | x ∈ U}. For the sake of simplicity, a PFS P
is denoted by P = (µP, νP). We say that a PFS P in U is constant Pythagorean
fuzzy set (CPFS) if their membership function µP and non-membership function
νP are constant.

Definition 1.5. [23] A PFS P = (µP, νP) in U is called

(1) a Pythagorean fuzzy UP-subalgebra (PFUPS) of U if it satisfies the fol-
lowing conditions:

(∀u, v ∈ U)(µP(u ⋆ v) ≥ min{µP(u), µP(v)}), (1.21)

(∀u, v ∈ U)(νP(u ⋆ v) ≤ max{νP(u), νP(v)}), (1.22)
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(2) a Pythagorean fuzzy near UP-filter (PFNUPF) of U if it satisfies the
following conditions:

(∀u, v ∈ U)(µP(u ⋆ v) ≥ µP(v)), (1.23)

(∀u, v ∈ U)(νP(u ⋆ v) ≤ νP(v)), (1.24)

(3) a Pythagorean fuzzy UP-filter (PFUPF) of U if it satisfies the following
conditions:

(∀u ∈ U)(µP(0) ≥ µP(u)), (1.25)

(∀u ∈ U)(νP(0) ≤ νP(u)), (1.26)

(∀u, v ∈ U)(µP(v) ≥ min{µP(u ⋆ v), µP(u)}), (1.27)

(∀u, v ∈ U)(νP(v) ≤ max{νP(u ⋆ v), νP(u)}), (1.28)

(4) a Pythagorean fuzzy UP-ideal (PFUPI) of U if it satisfies the conditions
(1.25) and (1.26) and the following conditions:

(∀u, v, w ∈ U)(µP(u ⋆ w) ≥ min{µP(u ⋆ (v ⋆ w)), µP(v)}), (1.29)

(∀u, v, w ∈ U)(νP(u ⋆ w) ≤ max{νP(u ⋆ (v ⋆ w)), νP(v)}), (1.30)

(5) a Pythagorean fuzzy strong UP-ideal (PFSUPI) of U if it satisfies the
conditions (1.25) and (1.26) and the following conditions:

(∀u, v, w ∈ U)(µP(u) ≥ min{µP((w ⋆ v) ⋆ (w ⋆ u)), µP(v)}), (1.31)

(∀u, v, w ∈ U)(νP(u) ≤ max{νP((w ⋆ v) ⋆ (w ⋆ u)), νP(v)}). (1.32)

Satirad et al. [23] proved that the concept of PFUPSs is a generalization of
PFNUPFs, PFNUPFs is a generalization of PFUPFs, PFUPFs is a generaliza-
tion of PFUPIs, and PFUPIs is a generalization of PFSUPIs. Furthermore, they
proved that PFSUPIs and constant PFSs coincide in U .

Figure 1. PFSs in UP-algebras
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Definition 1.6. [36] Let F be a FS with the membership function µF in U . The
sets

U(µF, t) = {u ∈ U | µF(u) ≥ t},
U+(µF, t) = {u ∈ U | µF(u) > t},
L(µF, t) = {u ∈ U | µF(u) ≤ t},

L−(µF, t) = {u ∈ U | µF(u) < t},
E(µF, t) = {u ∈ U | µF(u) = t}

are referred to as an upper t-level subset, an upper t-strong level subset, a lower
t-level subset, a lower t-strong level subset, and an equal t-level subset of F,
respectively, for any t ∈ [0, 1].

The following three theorems are proved in [25].

Theorem 1.7. P is a PFUPS (resp., PFNUPF, PFUPF, PFUPI, PFSUPI) of
U if and only if U(µP, t) and L(νP, t) are, if the sets are nonempty, UPSs (resp.,
NUPFs, UPFs, UPIs, SUPIs) of U for every t ∈ [0, 1].

Theorem 1.8. P is a PFUPS (resp., PFNUPF, PFUPF, PFUPI, PFSUPI) of
U if and only if U+(µP, t) and L−(νP, t) are, if the sets are nonempty, UPSs
(resp., NUPFs, UPFs, UPIs, SUPIs) of U for every t ∈ [0, 1].

Theorem 1.9. P is a PFSUPI of U if and only if E(µP, µP(0)) and E(νP, νP(0))
are SUPIs of U .

Definition 1.10. [40] Let {Pi = (µPi, νPi)}i∈I be a nonempty family of PFSs
in a nonempty set U where I is an arbitrary index set. The intersection of Pi,
denoted by

∧
i∈I Pi, is described by theirs membership function µ∧

i∈I Pi
and

non-membership function ν∧
i∈I Pi

which defined as follows:

(u ∈ U)(µ∧
i∈I Pi

(u) = inf{µPi(u)}i∈I),

(u ∈ U)(ν∧
i∈I Pi

(u) = sup{νPi(u)}i∈I).

The union of Pi, denoted by
∨

i∈I Pi, is described by theirs membership function
µ∨

i∈I Pi
and non-membership function ν∨

i∈I Pi
which defined as follows:

(u ∈ U)(µ∨
i∈I Pi

(u) = sup{µPi(u)}i∈I),

(u ∈ U)(ν∨
i∈I Pi

(u) = inf{νPi(u)}i∈I).

In particular, if I = {1, 2, . . . , n}, the intersection of P1,P2, . . . ,Pn, denoted
by P1 ∧P2 ∧ . . .∧Pn, is described by theirs membership function µP1∧P2∧...∧Pn

and non-membership function νP1∧P2∧...∧Pn which defined as follows:

(u ∈ U)(µP1∧P2∧...∧Pn
(u) = min{µP1(u), µP2(u), . . . , µPn(u)}),

(u ∈ U)(νP1∧P2∧...∧Pn(u) = max{νP1(u), νP2(u), . . . , νPn(u)}).
The union of P1,P2, . . . ,Pn, denoted by P1∨P2∨ . . .∨Pn, is described by theirs
membership function µP1∨P2∨...∨Pn

and non-membership function νP1∨P2∨...∨Pn

which defined as follows:
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(u ∈ U)(µP1∨P2∨...∨Pn
(u) = max{µP1(u), µP2(u), . . . , µPn(u)}),

(u ∈ U)(νP1∨P2∨...∨Pn
(u) = min{νP1(u), νP2(u), . . . , νPn(u)}).

Theorem 1.11. The intersection of any nonempty family of PFUPSs of U is
also a PFUPS.

Proof. Assume that Pi is a PFUPS of U for all i ∈ I. Let u, v ∈ U . Then
µ∧

i∈I Pi
(u ⋆ v) = inf{µPi(u ⋆ v)}i∈I

≥ inf{min{µPi(u), µPi(v)}}i∈I

= min{inf{µPi(u)}i∈I , inf{µPi(v)}i∈I}
= min{µ∧

i∈I Pi
(u), µ∧

i∈I Pi
(v)} and

ν∧
i∈I Pi

(u ⋆ v) = sup{νPi(u ⋆ v)}i∈I

≤ sup{max{νPi(u), νPi(v)}}i∈I

= max{sup{νPi(u)}i∈I , sup{νPi(v)}i∈I}
= max{ν∧

i∈I Pi
(u), ν∧

i∈I Pi
(v)}.

Hence,
∧

i∈I Pi is a PFUPS of U . □

The following example show that the union of two PFUPSs of UP-algebra
may be not a PFUPS.

Example 1.12. Let U = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation ⋆ defined by the following Cayley table:

⋆ 0 1 2 3
0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 0 1 0

We define two PFSs P1 = (µP1
, νP1

) and P2 = (µP2
, νP2

) as follows:

U 0 1 2 3
µP1

0.8 0.3 0.8 0.2
νP1

0.2 0.5 0.2 0.6
µP2

0.8 0.2 0.1 0.6
νP2 0.2 0.8 0.9 0.7

Then P1 and P2 are PFUPSs of U . Since µP1∨P2
(3 · 2) = µP1∨P2

(1) = 0.3 ≱
0.6 = min{0.6, 0.8} = min{µP1∨P2

(3), µP1∨P2
(2)}, we have P1 ∨ P2 is not a

PFUPS of U .

Theorem 1.13. The intersection of any nonempty family of PFNUPFs of U is
also a PFNUPF.

Proof. Assume that Pi is a PFNUPF of U for all i ∈ I. Then

µ∧
i∈I Pi

(u ⋆ v) = inf{µPi(u ⋆ v)}i∈I
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≥ inf{µPi(v)}i∈I

= µ∧
i∈I Pi

(v) and

ν∧
i∈I Pi

(u ⋆ v) = sup{νPi(u ⋆ v)}i∈I

≤ sup{νPi(v)}i∈I

= ν∧
i∈I Pi

(v).

Hence,
∧

i∈I Pi is a PFNUPF of U . □

Theorem 1.14. The union of any nonempty family of PFNUPFs of U is also
a PFNUPF.

Proof. Assume that Pi is a PFNUPF of U for all i ∈ I. Then

µ∨
i∈I Pi

(u ⋆ v) = sup{µPi(u ⋆ v)}i∈I

≥ sup{µPi(v)}i∈I

= µ∨
i∈I Pi

(v) and

ν∨
i∈I Pi

(u ⋆ v) = inf{νPi(u ⋆ v)}i∈I

≤ inf{νPi(v)}i∈I

= ν∨
i∈I Pi

(v).

Hence,
∨

i∈I Pi is a PFNUPF of U . □

Theorem 1.15. The intersection of any nonempty family of PFUPFs of U is
also a PFUPF.

Proof. Asusume that Pi be a PFUPF of U for all i ∈ I. Then

µ∧
i∈I Pi

(0) = inf{µPi(0)}i∈I

≥ inf{µPi(u)}i∈I

= µ∧
i∈I Pi

(u),

µ∧
i∈I Pi

(v) = inf{µPi(v)}i∈I

≥ inf{min{µPi(u ⋆ v), µPi(u)}}i∈I

= min{inf{µPi(u ⋆ v)}i∈I , inf{µPi(u)}i∈I}
= min{µ∧

i∈I Pi
(u ⋆ v), µ∧

i∈I Pi
(u)},

ν∧
i∈I Pi

(0) = sup{νPi(0)}i∈I

≤ sup{νPi(u)}i∈I

= ν∧
i∈I Pi

(u), and

ν∧
i∈I Pi

(v) = sup{νPi(v)}i∈I

≤ sup{max{νPi(u ⋆ v), νPi(u)}}i∈I

= max{sup{νPi(u ⋆ v)}i∈I , inf{νPi(u)}i∈I}
= max{ν∧

i∈I Pi
(u ⋆ v), ν∧

i∈I Pi
(u)}.
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Hence,
∧

i∈I Pi is a PFUPF of U . □

The following example show that the union of two PFUPFs of UP-algebra
may be not a PFUPF.

Example 1.16. Let U = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation ⋆ defined by the following Cayley table:

⋆ 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 1 0 1
3 0 0 0 0

We define two PFSs P1 = (µP1
, νP1

) and P2 = (µP2
, νP2

) as follows:

U 0 1 2 3
µP1

0.7 0.7 0.4 0.4
νP1 0.2 0.2 0.5 0.5
µP2 0.8 0.2 0.5 0.2
νP2

0.2 0.6 0.3 0.6

Then P1 and P2 are PFUPFs of U . Since µP1∨P2(3) = 0.4 ≱ 0.5 = min{0.5, 0.7} =
min{µP1∨P2(2) =, µP1∨P2(1)} = min{µP1∨P2(1 · 3), µP1∨P2(1)}, we have P1 ∨P2

is not a PFUPF of U .

Theorem 1.17. The intersection of any nonempty family of PFUPIs of U is
also a PFUPI.

Proof. Asusume that Pi be a PFUPI of U for all i ∈ I. Then

µ∧
i∈I Pi

(0) = inf{µPi(0)}i∈I

≥ inf{µPi(u)}i∈I

= µ∧
i∈I Pi

(u),

µ∧
i∈I Pi

(u ⋆ w) = inf{µPi(u ⋆ w)}i∈I

≥ inf{min{µPi(u ⋆ (v ⋆ w)), µPi(v)}}i∈I

= min{inf{µPi(u ⋆ (v ⋆ w))}i∈I , inf{µPi(v)}i∈I}
= min{µ∧

i∈I Pi
(u ⋆ (v ⋆ w)), µ∧

i∈I Pi
(v)},

ν∧
i∈I Pi

(0) = sup{νPi(0)}i∈I

≤ sup{νPi(u)}i∈I

= ν∧
i∈I Pi

(u), and

ν∧
i∈I Pi

(u ⋆ w) = sup{νPi(u ⋆ w)}i∈I

≤ sup{max{νPi(u ⋆ (v ⋆ w)), νPi(v)}}i∈I

= max{sup{νPi(u ⋆ (v ⋆ w))}i∈I , inf{νPi(v)}i∈I}
= max{ν∧

i∈I Pi
(u ⋆ (v ⋆ w)), ν∧

i∈I Pi
(v)}.
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Hence,
∧

i∈I Pi is a PFUPI of U . □

The following example show that the union of two PFUPIs of UP-algebra
may be not a PFUPI.

Example 1.18. In Example 1.16 We define two PFSs P1 = (µP1 , νP1) and
P2 = (µP2 , νP2) as follows:

U 0 1 2 3
µP1

1 0.4 0.7 0.4
νP1

0 0.5 0.3 0.5
µP2 0.9 0.7 0.1 0.1
νP2 0.2 0.4 0.9 0.9

Then P1 and P2 are PFUPIs of U . Since µP1∨P2(0 · 3) = µP1∨P2(3) = 0.4 ≱
0.7 = min{0.7, 0.7} = min{µP1∨P2(1), µP1∨P2(2)} = min{µP1∨P2(0 · (2 · 3)) =
, µP1∨P2

(2)}, we have P1 ∨ P2 is not a PFUPI of U .
Theorem 1.19. The intersection of any nonempty family of PFSUPIs of U is
also a PFSUPI. Moreover, the union of any nonempty family of PFSUPIs of U
is also a PFSUPI.

2. PFSSs over UP-algebras

From now on, we shall let E be a set of parameters. Let PF(U) be the set of
all PFSs in U . A subset A of E is called a set of statistics.

Definition 2.1. Let A ⊆ E. A pair (P̃, A) is called a Pythagorean fuzzy

soft set (PFSS) over U if P̃ is a mapping given by P̃ : A → PF(U), that
is, a PFSS is a statistic family of PFSs in U . In general, for every a ∈ A,

P̃[a] := {(u, µP̃[a](u), νP̃[a](u)) | u ∈ U} is a PFS in U and it is called a

Pythagorean fuzzy value set of statistic a.

We call a PFSS (P̃, A) over U that is a constant Pythagorean fuzzy soft set
(CPFSS) based on the element a ∈ A (we shortly call an a-constant Pythagorean

fuzzy soft set (a-CPFSS)) of U if a PFS P̃[a] in U is a CPFS. If (P̃, A) is an a-

CPFSS of U for all a ∈ A, we say that (P̃, A) is a CPFSS of U .
By Definition 2.1, we can find an example of PFSSs over U as follows:

Example 2.2. Let U = {0, 1, 2, 3} be a set which represents a collection of 4
Thai paintings. Define binary operation ⋆ on U as the following Cayley tables:

⋆ 0 1 2 3
0 0 1 2 3
1 0 0 0 3
2 0 1 0 3
3 0 1 2 0

Then U = (U , ⋆, 0) is a UP-algebra. Let (P̃, A) be a PFSS over U where

A = {identity,beauty, skill}.
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Then P̃[identity], P̃[beauty], and P̃[skill] are three PFSs in U . We define them
as follows:

P̃ 0 1 2 3
identity (0.4, 0.5) (0.3, 0.3) (0.1, 0.6) (0.8, 0.2)
beauty (0.9, 0.3) (0.2, 0.5) (0.1, 0.2) (0.8, 0.4)
skill (0.3, 0.5) (0.3, 0.7) (0.5, 0.6) (0.7, 0.7)

Definition 2.3. [20] Let A,B ⊆ E and (P̃, A), (Q̃, B) be two PFSSs over U . If
(P̃, A) and (Q̃, B) satisfy the following two conditions:

(1) B ⊆ A,
(2) (∀b ∈ B, u ∈ U)(µQ̃[b](u) ≤ µP̃[b](u), νQ̃[b](u) ≥ νP̃[b](u)),

then we call (Q̃, B) the Pythagorean fuzzy soft subset of (P̃, A), denoted by

(Q̃, B)⊆̃(P̃, A)

Definition 2.4. [20] Let A,B ⊆ E and (P̃, A), (Q̃, B) be two PFSSs over U . If
(Q̃, B)⊆̃(P̃, A) and (P̃, A)⊆̃(Q̃, B), then we call (P̃, A) equal (Q̃, B), denoted by

(Q̃, B)=̃(P̃, A), meaning, A = B and P̃[a] = Q̃[a] for all a ∈ A.

Definition 2.5. [20] Let (P̃1, A1) and (P̃2, A2) be two PFSSs over U . The union
of (P̃1, A1) and (P̃2, A2) is defined to be the PFSS (P̃1, A1)∪̃(P̃2, A2) = (P̃, A)
satisfying the following conditions:

(1) A = A1 ∪A2 and
(2) for all a ∈ A,

P̃[a] =


P̃1[a] if a ∈ A1 \A2

P̃2[a] if a ∈ A2 \A1

P̃1[a] ∨ P̃2[a] if a ∈ A1 ∩A2.

The restricted union of (P̃1, A1) and (P̃2, A2) is defined to be the PFSS

(P̃1, A1)⋓̃(P̃2, A2) = (P̃, A) satisfying the following conditions:

(1) A = A1 ∩A2 ̸= ∅ and

(2) P̃[a] = P̃1[a] ∨ P̃2[a] for all a ∈ A.

Definition 2.6. Let (P̃1, A1) and (P̃2, A2) be two PFSSs over U . The extended

intersection of (P̃1, A1) and (P̃2, A2) is defined to be the PFSS (P̃1, A1)∩̃(P̃2, A2) =

(P̃, A) satisfying the following conditions:

(1) A = A1 ∪A2 and
(2) for all a ∈ A,

P̃[a] =


P̃1[a] if a ∈ A1 \A2

P̃2[a] if a ∈ A2 \A1

P̃1[a] ∧ P̃2[a] if a ∈ A1 ∩A2.
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The intersection [20] of (P̃1, A1) and (P̃2, A2) is defined to be the fuzzy soft set

(P̃1, A1)⋒̃(P̃2, A2) = (P̃, A) satisfying the following conditions:

(1) A = A1 ∩A2 ̸= ∅ and

(2) P̃[a] = P̃1[a] ∧ P̃2[a] for all a ∈ A.

2.1. Pythagorean Fuzzy Soft UP-Subalgebras.

Definition 2.7. A PFSS (P̃, A) over U is called a Pythagorean fuzzy soft UP-
subalgebra (PFSUPS) based on the element a ∈ A (we shortly call an

a-Pythagorean fuzzy soft UP-subalgebra (a-PFSUPS)) of U if a PFS P̃[a] in U is

a PFUPS. If (P̃, A) is an a-PFSUPS of U for all a ∈ A, we say that (P̃, A) is a
PFSUPS of U .

Theorem 2.8. (P̃, A) is a PFSUPS of U if and only if U(µP̃[a], t) and L(νP̃[a], t)

are, if the sets are nonempty, UPSs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSUPS of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a PFUPS

of U for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By

Theorem 1.7, we have U(µP̃[a], t) and L(νP̃[a], t) are UPSs of U for all a ∈ A, t ∈
[0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are UPSs

of U if the sets are nonempty. By Theorem 1.7, we have P̃[a] = (µP̃[a], νP̃[a]) is

a PFUPS of U for all a ∈ A. Hence, (P̃, A) is a PFSUPS of U . □

Theorem 2.9. (P̃, A) is a PFSUPS of U if and only if U+(µP̃[a], t) and

L−(νP̃[a], t) are, if the sets are nonempty, UPSs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSUPS of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a PFUPS

of U for all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅.

By Theorem 1.8, we have U+(µP̃[a], t) and L−(νP̃[a], t) are UPSs of U for all

a ∈ A, t ∈ [0, 1].
Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t) are

UPSs of U if the sets are nonempty. By Theorem 1.8, we have P̃[a] = (µP̃[a], νP̃[a])

is a PFUPS of U for all a ∈ A. Hence, (P̃, A) is a PFSUPS of U . □

The proof of the following theorem can be verified easily.

Theorem 2.10. If (P̃, A) is a PFSUPS of U and ∅ ̸= B ⊆ A, then (P̃|B , B) is
a PFSUPS of U .

The following example shows that there exists a nonempty subset B of A such

that (P̃|B , B) is a PFSUPS of U , but (P̃, A) is not a PFSUPS of U .

Example 2.11. By Example 2.2, we have P̃[beauty] is a PFUPS of U . But

P̃[identity] and P̃[skill] are not PFUPSs of U . Indeed, νP̃[identity](1 ⋆ 1) =
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νP̃[identity](0) = 0.5 ≰ 0.3 = min{0.3, 0.3} = min{νP̃[identity](1), νP̃[identity](1)}
and µP̃[skill](2 ⋆ 2) = µP̃[skill](0) = 0.3 ≱ 0.5 = min{0.5, 0.5} = min{µP̃[skill](2),

µP̃[skill](2)}. Hence, (P̃, A) is not a PFSUPS over U . We take B = {beauty}.
Thus (P̃|B , B) is a PFSUPS of U .

Theorem 2.12. The extended intersection of two PFSUPSs of U is also a PF-
SUPS. Moreover, the intersection of two PFSUPSs of U is also a PFSUPS.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSUPSs of U . We denote

(P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFUPS of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFUPS of U .
Case 3: a ∈ A1 ∩ A2. By Theorem 1.11, we have P̃[a] = P̃1[a] ∧ P̃2[a] is a

PFUPS of U .
Thus (P̃, A) is an a-PFSUPS of U for all a ∈ A. Hence, (P̃, A) is a PFSUPS

of U . □

Theorem 2.13. The union of two PFSUPSs of U is also a PFSUPS if sets of
statistics of two PFSUPSs are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSUPSs of U such that

A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2. Since
A1 ∩A2 = ∅, we have a ∈ A1 \A2 or a ∈ A2 \A1. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFUPS of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFUPS of U .
Thus (P̃, A) is an a-PFSUPS of U for all a ∈ A. Hence, (P̃, A) is a PFSUPS

of U . □

The following example shows that Theorem 2.13 is not valid if sets of statistics
of two PFSUPSs are not disjoint.

Example 2.14. Let U be a set of four Thai foods, that is,

U = {Pad Thai, Som Tam, Laab, Tom Yum Goong}.

Define binary operation ⋆ on U as the following Cayley table:

⋆ Pad Thai Som Tam Laab Tom Yum Goong
Pad Thai Pad Thai Som Tam Laab Tom Yum Goong
Som Tam Pad Thai Pad Thai Som Tam Tom Yum Goong

Laab Pad Thai Pad Thai Pad Thai Tom Yum Goong
Tom Yum Goong Pad Thai Pad Thai Som Tam Pad Thai

Then U = (U , ⋆,Pad Thai) is a UP-algebra. Let (P̃1, A1) and (P̃2, A2) are PFSSs
over U where

A1 := {popularity, aroma}
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and

A2 := {popularity, deliciousness}
with P̃1[popularity], P̃1[aroma], P̃2[popularity], and P̃2[deliciousness] are PFSs
in U defined as follows:

P̃1 Pad Thai Som Tam Laab Tom Yum Goong
popularity (0.9, 0) (0.5, 0.4) (0.9, 0) (0.3, 0.5)
aroma (0.5, 0.4) (0.4, 0.8) (0.4, 0.8) (0.4, 0.8)

P̃2 Pad Thai Som Tam Laab Tom Yum Goong
popularity (0.9, 0.1) (0.3, 0.7) (0.2, 0.8) (0.7, 0.2)
deliciousness (0.5, 0.5) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9)

Then (P̃1, A1) and (P̃2, A2) are PFSUPSs of U . Since popularity ∈ A1 ∩A2, we
have

µP̃1[popularity]∨P̃2[popularity]
(Tom Yum Goong ⋆ Laab)

= µP̃1[popularity]∨P̃2[popularity]
(Som Tam)

= 0.5

≱ 0.7

= min{0.7, 0.9}
= min{µP̃1[popularity]∨P̃2[popularity]

(Tom Yum Goong),

µP̃1[popularity]∨P̃2[popularity]
(Laab)}.

Thus P̃1[popularity] ∨ P̃2[popularity] is not a PFUPS of U , that is,
(P̃1, A1)∪̃(P̃2, A2) is not a popularity-PFSUPS of U . Hence,

(P̃1, A1)∪̃(P̃2, A2) is not a PFSUPS of U . Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a
PFSUPS of U .

2.2. Pythagorean Fuzzy Soft Near UP-Filters.

Definition 2.15. A PFSS (P̃, A) over U is called a Pythagorean fuzzy soft near
UP-filter (PFSNUPF) based on a ∈ A (we shortly call an a-Pythagorean fuzzy

soft near UP-filter (a-PFSNUPF)) of U if a PFS P̃[a] in U is a PFNUPF. If

(P̃, A) is an a-PFSNUPF of U for all a ∈ A, we say that (P̃, A) is a PFSNUPF
of U .

Theorem 2.16. (P̃, A) is a PFSNUPF of U if and only if U(µP̃[a], t) and

L(νP̃[a], t) are, if the sets are nonempty, NUPFs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSNUPF of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a

PFNUPF of U for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅.
By Theorem 1.7, we have U(µP̃[a], t) and L(νP̃[a], t) are NUPFs of U for all

a ∈ A, t ∈ [0, 1].
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Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are

NUPFs of U if the sets are nonempty. By Theorem 1.7, we have P̃[a] =

(µP̃[a], νP̃[a]) is a PFNUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSNUPF

of U . □

Theorem 2.17. (P̃, A) is a PFSNUPF of U if and only if U+(µP̃[a], t) and

L−(νP̃[a], t) are, if the sets are nonempty, NUPFs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSNUPF of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a

PFNUPF of U for all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸=

∅. By Theorem 1.8, we have U+(µP̃[a], t) and L−(νP̃[a], t) are NUPFs of U for

all a ∈ A, t ∈ [0, 1].
Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are NUPFs of U if the sets are nonempty. By Theorem 1.8, we have P̃[a] =

(µP̃[a], νP̃[a]) is a PFNUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSNUPF of

U . □

The proof of the following theorem can be verified easily.

Theorem 2.18. If (P̃, A) is a PFSNUPF of U and ∅ ̸= B ⊆ A, then (P̃|B , B)
is a PFSNUPF of U .

From Figure 1, we have the following theorem.

Theorem 2.19. Every a-PFSNUPF of U is an a-PFSUPS. Moreover, every
PFSNUPF of U is a PFSUPS.

The following example shows that the converse of Theorem 2.19 is not true.

Example 2.20. Let U be a set of four drinks, that is,

U = {Chocolate, Thai tea, Latte, Espresso}.
Define binary operation ⋆ on U as the following Cayley table:

⋆ Chocolate Thai tea Latte Espresso
Chocolate Chocolate Thai tea Latte Espresso
Thai tea Chocolate Chocolate Thai tea Espresso
Latte Chocolate Chocolate Chocolate Espresso

Espresso Chocolate Thai tea Thai tea Chocolate

Then U = (U , ⋆,Chocolate) is a UP-algebra. Let (P̃, A) be a PFSS over U where

A := {child, teen, adult}

with P̃[child], P̃[teen], and P̃[adult] are PFSs in U defined as follows:

P̃ Chocolate Thai tea Latte Espresso
child (1, 0) (0.3, 0.4) (0.9, 0.2) (0.2, 0.5)
teen (0.9, 0.1) (0.8, 0.2) (0.6, 0.4) (0.7, 0.4)
adult (0.7, 0.4) (0.6, 0.4) (0.1, 0.6) (0.6, 0.8)
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Then (P̃, A) is a child-PFSUPS of U . But (P̃, A) is not a child-PFSNUPF of U
since

µP̃[child](Thai tea ⋆ Latte) = µP̃[child](Thai tea)

= 0.3

≱ 0.9

= µP̃[child](Latte)

and

νP̃[child](Thai tea ⋆ Latte) = νP̃[child](Thai tea)

= 0.4

≰ 0.2

= νP̃[child](Latte).

Hence, P̃[child] is not a PFNUPF of U , that is, (P̃, A) is not a child-PFSNUPF
of U .

Theorem 2.21. The extended intersection of two PFSNUPFs of U is also a
PFSNUPF. Moreover, the intersection of two PFSNUPFs of U is also a PFS-
NUPF.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSNUPFs of U . We denote

(P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFNUPF of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFNUPF of U .
Case 3: a ∈ A1 ∩ A2. By Theorem 1.13, we have P̃[a] = P̃1[a] ∧ P̃2[a] is a

PFNUPF of U .
Thus (P̃, A) is an a-PFSNUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSNUPF

of U . □

Theorem 2.22. The union of two PFSNUPFs of U is also a PFSNUPF. More-
over, the restricted union of two PFSNUPFs of U is also a PFSNUPF.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSNUPFs of U . We denote

(P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFNUPF of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFNUPF of U .
Case 3: a ∈ A1 ∩ A2. By Theorem 1.14, we have P̃[a] = P̃1[a] ∨ P̃2[a] is a

PFNUPF of U .
Thus (P̃, A) is an a-PFSNUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSNUPF

of U . □
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2.3. Pythagorean Fuzzy Soft UP-Filters.

Definition 2.23. A PFSS (P̃, A) over U is called a Pythagorean fuzzy soft UP-
filter (PFSUPF) based on a ∈ A (we shortly call an a-Pythagorean fuzzy soft

UP-filter (a-PFSUPF)) of U if a PFS P̃[a] in U is a PFUPF. If (P̃, A) is an

a-PFSUPF of U for all a ∈ A, we say that (P̃, A) is a PFSUPF of U .

Theorem 2.24. (P̃, A) is a PFSUPF of U if and only if U(µP̃[a], t) and L(νP̃[a], t)

are, if the sets are nonempty, UPFs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSUPF of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a PFUPF

of U for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By

Theorem 1.7, we have U(µP̃[a], t) and L(νP̃[a], t) are UPFs of U for all a ∈ A, t ∈
[0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are UPFs

of U if the sets are nonempty. By Theorem 1.7, we have P̃[a] = (µP̃[a], νP̃[a]) is

a PFUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSUPF of U . □

Theorem 2.25. (P̃, A) is a PFSUPF of U if and only if U+(µP̃[a], t) and

L−(νP̃[a], t) are, if the sets are nonempty, UPFs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSUPF of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a PFUPF

of U for all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅.

By Theorem 1.8, we have U+(µP̃[a], t) and L−(νP̃[a], t) are UPFs of U for all

a ∈ A, t ∈ [0, 1].
Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are UPFs of U if the sets are nonempty. By Theorem 1.8, we have P̃[a] =

(µP̃[a], νP̃[a]) is a PFUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSUPF of

U . □

The proof of the following theorem can be verified easily.

Theorem 2.26. If (P̃, A) is a PFSUPF of U and ∅ ̸= B ⊆ A, then (P̃|B , B) is
a PFSUPF of U .

From Figure 1, we have the following theorem.

Theorem 2.27. Every a-PFSUPF of U is an a-PFSNUPF. Moreover, every
PFSUPF of U is a PFSNUPF.

The following example shows that the converse of Theorem 2.27 is not true.

Example 2.28. Let U be a set of four Apple’s product, that is,

U = {iPhone, iPad, Mac, Watch}.
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Define binary operation ⋆ on U as the following Cayley table:

⋆ iPhone iPad Mac Watch
iPhone iPhone iPad Mac Watch
iPad iPhone iPhone Mac Watch
Mac iPhone iPhone iPhone Watch
Watch iPhone iPhone iPhone iPhone

Then U = (U , ⋆, iPhone) is a UP-algebra. Let (P̃, A) be a PFSS over U where

A := {student, athlete, programmer}

with P̃[student], P̃[athlete], and P̃[programmer] are PFSs in U defined as follows:

P̃ iPhone iPad Mac Watch
student (0.9, 0.1) (0.7, 0.4) (0.8, 0.2) (0.2, 0.6)
athlete (0.7, 0.4) (0.6, 0.5) (0.7, 0.4) (0.2, 0.6)

programmer (0.8, 0.2) (0.5, 0.7) (0.6, 0.5) (0.8, 0.2)

Then (P̃, A) is a programmer-PFSNUPF of U . But (P̃, A) is not a programmer-
PFSUPF of U since

µP̃[programmer](iPad) = 0.5

≱ 0.6

= min{0.8, 0.6}
= min{µP̃[programmer](iPhone), µP̃[programmer](Mac)}
= min{µP̃[programmer](Mac ⋆ iPad), µP̃[programmer](Mac)}

and

νP̃[programmer](iPad) = 0.7

≰ 0.5

= max{0.2, 0.5}
= max{νP̃[programmer](iPhone), νP̃[programmer](Mac)}
= max{νP̃[programmer](Mac ⋆ iPad), νP̃[programmer](Mac)}.

Hence, P̃[programmer] is not a PFUPF of U , that is, (P̃, A) is not a programmer-
PFSUPF of U .

Theorem 2.29. The extended intersection of two PFSUPFs of U is also a
PFSUPF. Moreover, the intersection of two PFSUPFs of U is also a PFSUPF.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSUPFs of U . We denote

(P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFUPF of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFUPF of U .
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Case 3: a ∈ A1 ∩ A2. By Theorem 1.15, we have P̃[a] = P̃1[a] ∧ P̃2[a] is a
PFUPF of U .

Thus (P̃, A) is an a-PFSUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSUPF
of U . □

Theorem 2.30. The union of two PFSUPFs of U is also a PFSUPF if sets of
statistics of two PFSUPFs are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSUPFs of U such that

A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2. Since
A1 ∩A2 = ∅, we have a ∈ A1 \A2 or a ∈ A2 \A1. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFUPF of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFUPF of U .
Thus (P̃, A) is an a-PFSUPF of U for all a ∈ A. Hence, (P̃, A) is a PFSUPF

of U . □

The following example shows that Theorem 2.30 is not valid if sets of statistics
of two PFSUPFs are not disjoint.

Example 2.31. Let U be a set of four seasons, that is,

U = {Spring, Rains, Summer, Winter}.
Define binary operation ⋆ on U as the following Cayley table:

⋆ Winter Rains Spring Summer
Winter Winter Rains Spring Summer
Rains Winter Winter Spring Spring
Spring Winter Rains Winter Rains
Summer Winter Winter Winter Winter

Then U = (U , ⋆,Winter) is a UP-algebra. Let (P̃1, A1) and (P̃2, A2) are PFSSs
over U where

A1, := {coldness, moisture}
and

A2 := {moisture, excitement, warmth}
with P̃1[coldness], P̃1[moisture], P̃2[moisture], P̃2[excitement], and P̃2[warmth] are
PFSs in U defined as follows:

P̃1 Winter Rains Spring Summer
coldness (0.9, 0.4) (0.2, 0.7) (0.2, 0.7) (0.2, 0.7)
moisture (0.8, 0.2) (0.8, 0.2) (0.3, 0.4) (0.3, 0.4)

P̃2 Winter Rains Spring Summer
moisture (0.9, 0.1) (0.1, 0.7) (0.5, 0.4) (0.1, 0.7)
excitement (0.6, 0.5) (0.3, 0.8) (0.6, 0.5) (0.3, 0.8)
warmth (0.5, 0.5) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
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Then (P̃1, A1) and (P̃2, A2) are PFSUPFs of U . Since moisture ∈ A1 ∩ A2, we
have

µP̃1[moisture]∨P̃2[moisture](Summer)

= 0.3

≱ 0.5

= min{0.5, 0.8}
= min{µP̃1[moisture]∨P̃2[moisture](Spring),

µP̃1[moisture]∨P̃2[moisture](Rains)}
= min{µP̃1[moisture]∨P̃2[moisture](Rains ⋆ Summer),

µP̃1[moisture]∨P̃2[moisture](Rains)}.

Thus P̃1[moisture]∨P̃2[moisture] is not a PFUPF of U , that is, (P̃1, A1)∪̃(P̃2, A2)

is not a moisture-PFSUPF of U . Hence, (P̃1, A1)∪̃(P̃2, A2) is not a PFSUPF of

U . Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a PFSUPF of U .

2.4. Pythagorean Fuzzy Soft UP-Ideals.

Definition 2.32. A PFSS (P̃, A) over U is called a Pythagorean fuzzy soft UP-
ideal (PFSUPI) based on a ∈ A (we shortly call an a-Pythagorean fuzzy soft

UP-ideal (a-PFSUPI)) of U if a PFS P̃[a] in U is a PFUPI. If (P̃, A) is an

a-PFSUPI of U for all a ∈ A, we say that (P̃, A) is a PFSUPI of U .

Theorem 2.33. (P̃, A) is a PFSUPI of U if and only if U(µP̃[a], t) and L(νP̃[a], t)

are, if the sets are nonempty, UPIs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSUPI of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a PFUPI

of U for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅. By

Theorem 1.7, we have U(µP̃[a], t) and L(νP̃[a], t) are UPIs of U for all a ∈ A, t ∈
[0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are UPIs

of U if the sets are nonempty. By Theorem 1.7, we have P̃[a] = (µP̃[a], νP̃[a]) is

a PFUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSUPI of U . □

Theorem 2.34. (P̃, A) is a PFSUPI of U if and only if U+(µP̃[a], t) and L−(νP̃[a], t)

are, if the sets are nonempty, UPIs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSUPI of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a PFUPI

of U for all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸= ∅.

By Theorem 1.8, we have U+(µP̃[a], t) and L−(νP̃[a], t) are UPIs of U for all

a ∈ A, t ∈ [0, 1].
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Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t) are

UPIs of U if the sets are nonempty. By Theorem 1.8, we have P̃[a] = (µP̃[a], νP̃[a])

is a PFUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSUPI of U . □

The proof of the following theorem can be verified easily.

Theorem 2.35. If (P̃, A) is a PFSUPI of U and ∅ ≠ B ⊆ A, then (P̃|B , B) is
a PFSUPI of U .

From Figure 1, we have the following theorem.

Theorem 2.36. Every a-PFSUPI of U is an a-PFSUPF. Moreover, every PF-
SUPI of U is a PFSUPF.

The following example shows that the converse of Theorem 2.36 is not true.

Example 2.37. Let U be a set of four types of film, that is,

U = {Fantasy, Horror, Comedy, Action}.
Define binary operation ⋆ on U as the following Cayley table:

⋆ Comedy Fantasy Horror Action
Comedy Comedy Fantasy Horror Action
Fantasy Comedy Comedy Horror Horror
Horror Comedy Fantasy Comedy Horror
Action Comedy Fantasy Comedy Comedy

Then U = (U , ⋆,Comedy) is a UP-algebra. Let (P̃, A) be a PFSS over U where

A := {variety, violence, entertainment}

with P̃[variety], P̃[violence], and P̃[entertainment] are PFSs in U defined as fol-
lows:

P̃ Comedy Fantasy Horror Action
variety (0.7, 0.3) (0.3, 0.5) (0.2, 0.9) (0.2, 0.9)
violence (0.5, 0.5) (0.2, 0.7) (0.7, 0.7) (0.4, 0.8)

entertainment (0.8, 0.2) (0.5, 0.7) (0.6, 0.5) (0.6, 0.5)

Then (P̃, A) is a variety-PFSUPF of U . But (P̃, A) is not a variety-PFSUPI of
U since

µP̃[variety](Horror ⋆Action)

= µP̃[variety](Horror)

= 0.2

≱ 0.3

= min{0.7, 0.3}
= min{µP̃[variety](Comedy), µP̃[variety](Fantasy)}
= min{µP̃[variety](Horror ⋆ (Fantasy ⋆Action)), µP̃[variety](Fantasy)}
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and

νP̃[variety](Horror ⋆Action)

= νP̃[variety](Horror)

= 0.9

≰ 0.5

= max{0.3, 0.5}
= max{νP̃[variety](Comedy), νP̃[variety](Fantasy)}
= max{νP̃[variety](Horror ⋆ (Fantasy ⋆Action)), νP̃[variety](Fantasy)}.

Hence, P̃[variety] is not a PFUPI of U , that is, (P̃, A) is not a variety-PFSUPI
of U .

Theorem 2.38. The extended intersection of two PFSUPIs of U is also a PF-
SUPI. Moreover, the intersection of two PFSUPIs of U is also a PFSUPI.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSUPIs of U . We denote

(P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFUPI of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFUPI of U .
Case 3: a ∈ A1 ∩ A2. By Theorem 1.17, we have P̃[a] = P̃1[a] ∧ P̃2[a] is a

PFUPI of U .
Thus (P̃, A) is an a-PFSUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSUPI

of U . □

Theorem 2.39. The union of two PFSUPIs of U is also a PFSUPI if sets of
statistics of two PFSUPIs are disjoint.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSUPIs of U such that

A1 ∩ A2 = ∅. We denote (P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪ A2. Since
A1 ∩A2 = ∅, we have a ∈ A1 \A2 or a ∈ A2 \A1. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFUPI of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFUPI of U .
Thus (P̃, A) is an a-PFSUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSUPI

of U . □

The following example shows that Theorem 2.39 is not valid if sets of statistics
of two PFSUPIs are not disjoint.

Example 2.40. In Example 2.31, we have (P̃1, A1) and (P̃2, A2) are PFSUPIs
of U . Since moisture ∈ A1 ∩A2, we have

µP̃1[moisture]∨P̃2[moisture](Winter ⋆ Summer)

= µP̃1[moisture]∨P̃2[moisture](Summer)

= 0.3
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≱ 0.5

= min{0.8, 0.5}
= min{µP̃1[moisture]∨P̃2[moisture](Rains),

µP̃1[moisture]∨P̃2[moisture](Spring)}
= min{µP̃1[moisture]∨P̃2[moisture](Winter ⋆ (Spring ⋆ Summer)),

µP̃1[moisture]∨P̃2[moisture](Spring)}.

Thus P̃1[moisture]∨P̃2[moisture] is not a PFUPI of U , that is, (P̃1, A1)∪̃(P̃2, A2)

is not a moisture-PFSUPI of U . Hence, (P̃1, A1)∪̃(P̃2, A2) is not a PFSUPI of

U . Moreover, (P̃1, A1)⋓̃(P̃2, A2) is not a PFSUPI of U .
2.5. Pythagorean Fuzzy Soft Strong UP-Ideals.

Definition 2.41. A PFSS (P̃, A) over U is called a Pythagorean fuzzy soft strong
UP-ideal (PFSSUPI) based on a ∈ A (we shortly call an a-Pythagorean fuzzy

soft strong UP-ideal (a-PFSSUPI)) of U if a PFS P̃[a] in U is a PFSUPI. If P̃[a]

is an a-PFSSUPI of U for all a ∈ A, we say that P̃[a] is a PFSSUPI of U .

Theorem 2.42. (P̃, A) is a PFSSUPI of U if and only if U(µP̃[a], t) and L(νP̃[a], t)

are, if the sets are nonempty, SUPIs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSSUPI of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a

PFSUPI of U for all a ∈ A. Let t ∈ [0, 1] be such that U(µP̃[a], t), L(νP̃[a], t) ̸= ∅.
By Theorem 1.7, we have U(µP̃[a], t) and L(νP̃[a], t) are SUPIs of U for all a ∈
A, t ∈ [0, 1].

Conversely, assume for all a ∈ A, t ∈ [0, 1], U(µP̃[a], t) and L(νP̃[a], t) are SUPIs

of U if the sets are nonempty. By Theorem 1.7, we have P̃[a] = (µP̃[a], νP̃[a]) is

a PFSUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSSUPI of U . □

Theorem 2.43. (P̃, A) is a PFSSUPI of U if and only if U+(µP̃[a], t) and

L−(νP̃[a], t) are, if the sets are nonempty, SUPIs for every a ∈ A, t ∈ [0, 1].

Proof. Assume (P̃, A) is a PFSSUPI of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a

PFSUPI of U for all a ∈ A. Let t ∈ [0, 1] be such that U+(µP̃[a], t), L
−(νP̃[a], t) ̸=

∅. By Theorem 1.8, we have U+(µP̃[a], t) and L−(νP̃[a], t) are SUPIs of U for all

a ∈ A, t ∈ [0, 1].
Conversely, assume for all a ∈ A, t ∈ [0, 1], U+(µP̃[a], t) and L−(νP̃[a], t)

are SUPIs of U if the sets are nonempty. By Theorem 1.8, we have P̃[a] =

(µP̃[a], νP̃[a]) is a PFSUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSSUPI of

U . □

Theorem 2.44. (P̃, A) is a PFSSUPI of U if and only if E(µP̃[a], µP̃[a](0)) and

E(νP̃[a], νP̃[a](0)) are SUPIs of U .
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Proof. Assume (P̃, A) is a PFSSUPI of U , that is, P̃[a] = (µP̃[a], νP̃[a]) is a

PFSUPI of U for all a ∈ A. By Theorem 1.9, we have E(µP̃[a], µP̃[a](0)) and

E(νP̃[a], νP̃[a](0)) are SUPIs of U .
Conversely, assume for all a ∈ A,E(µP̃[a], µP̃[a](0)) and E(νP̃[a], νP̃[a](0)) are

SUPIs of U . By Theorem 1.9, we have P̃[a] = (µP̃[a], νP̃[a]) is a PFSUPI of U for

all a ∈ A. Hence, (P̃, A) is a PFSSUPI of U . □

The proof of the following theorem can be verified easily.

Theorem 2.45. If (P̃, A) is a PFSSUPI of U and ∅ ≠ B ⊆ A, then (P̃|B , B) is
a PFSSUPI of U .

From Figure 1, we have the following theorems.

Theorem 2.46. a-PFSSUPI and a-CPFSS coincide in U . Moreover, PFSSUPI
and CPFSS coincide in U .

Theorem 2.47. Every a-PFSSUPI of U is an a-PFSUPI. Moreover, every PF-
SSUPI of U is a PFSUPI.

The following example shows that the converse of Theorem 2.47 is not true.

Example 2.48. Let U be a set of four games of E-sports, that is,

U = {DOTA, Pokemon, Call of Duty, FIFA}.
Define binary operation ⋆ on U as the following Cayley table:

⋆ DOTA FIFA Call of Duty Pokemon
DOTA DOTA FIFA Call of Duty Pokemon

Pokemon DOTA DOTA FIFA Pokemon
Call of Duty DOTA DOTA DOTA Pokemon

FIFA DOTA FIFA Call of Duty DOTA

Then U = (U , ⋆,DOTA) is a UP-algebra. Let (P̃, A) be a PFSS over U where

A := {pressure, planning, relaxation}

with P̃[pressure], P̃[planning], and P̃[relaxation] are PFSs in U defined as follows:

P̃ DOTA FIFA Call of Duty Pokemon
pressure (1, 0) (0.7, 0.3) (0.7, 0.3) (0.2, 0.8)
planning (0.8, 0.4) (0.6, 0.6) (0.6, 0.6) (0.3, 0.9)
relaxation (0.2, 0.4) (0.3, 0.4) (0.3, 0.6) (0.6, 0.4)

Then (P̃, A) is a planning-PFSUPI of U . But (P̃, A) is not a planning-PFSSUPI
of U since

µP̃[planning]

(Call of Duty)

= 0.6
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≱ 0.8

= min{0.8, 0.8}
= min{µP̃[planning](DOTA), µP̃[planning](DOTA)}
= min{µP̃[planning]((Call of Duty ⋆DOTA) ⋆ (Call of Duty ⋆ Call of Duty)),

µP̃[planning](DOTA)}

and

νP̃[planning]

(Call of Duty)

= 0.6

≰ 0.4

= max{0.4, 0.4}
= max{νP̃[planning](DOTA), νP̃[planning](DOTA)}
= max{νP̃[planning]((Call of Duty ⋆DOTA) ⋆ (Call of Duty ⋆ Call of Duty)),

νP̃[planning](DOTA)}.

Hence, P̃[planning] is not a PFSUPI of U , that is, (P̃, A) is not a planning-
PFSSUPI of U .

Theorem 2.49. The extended intersection of two PFSSUPIs of U is also a
PFSSUPI. Moreover, the intersection of two PFSSUPIs of U is also a PFSSUPI.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSSUPIs of U . We denote

(P̃, A1)∩̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFSUPI of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFSUPI of U .
Case 3: a ∈ A1 ∩ A2. By Theorem 1.19, we have P̃[a] = P̃1[a] ∧ P̃2[a] is a

PFSUPI of U .
Thus (P̃, A) is an a-PFSSUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSSUPI

of U . □

Theorem 2.50. The union of two PFSSUPIs of U is also a PFSSUPI. More-
over, the restricted union of two PFSSUPIs of U is also a PFSSUPI.

Proof. Assume that (P̃1, A1) and (P̃2, A2) are two PFSSUPIs of U . We denote

(P̃, A1)∪̃(P̃2, A2) by (P̃, A) where A = A1 ∪A2. Next, let a ∈ A.

Case 1: a ∈ A1 \A2. Then P̃[a] = P̃1[a] is a PFSUPI of U .
Case 2: a ∈ A2 \A1. Then P̃[a] = P̃2[a] is a PFSUPI of U .
Case 3: a ∈ A1 ∩ A2. By Theorem 1.19, we have P̃[a] = P̃1[a] ∨ P̃2[a] is a

PFSUPI of U .
Thus (P̃, A) is an a-PFSSUPI of U for all a ∈ A. Hence, (P̃, A) is a PFSSUPI

of U . □
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3. Conclusions and Future Works

In this paper, we introduced five types of PFSSs of UP-algebras and proved
that the concept of PFSUPSs is a generalization of PFSNUPFs, PFSNUPFs is
a generalization of PFSUPFs, PFSUPFs is a generalization of PFSUPIs, and
PFSUPIs is a generalization of PFSSUPIs. Furthermore, they proved that PF-
SSUPIs and CPFSSs coincide. We got the diagram of generalization of PFSSs
over UP-algebras, which is shown with Figure 2.

Figure 2. PFSSs over UP-algebras

After, we found that the (extended) intersection of two PFSUPSs (resp., PFS-
NUPFs, PFSUPFs, PFSUPIs, PFSSUPIs) is also a PFSUPS (resp., PFSNUPF,
PFSUPF, PFSUPI, PFSSUPI) but the (restricted) union is not satisfy except
PFSNUPFs and PFSSUPIs.

Finally, we connected between PFSSs and special subset of UP-algebras under
upper t-level subsets, upper t-strong level subsets, lower t-level subsets, lower
t-strong level subsets, and equal t-level subset of PFSs.

Research topics that will expand on this study in the near future include:

(1) to study Fermatean fuzzy sets based on the concept of Senapati and
Yager [35],

(2) to introduce the concept of bipolar Pythagorean fuzzy soft sets based on
the concept of Jana and Pal [11],

(3) to study Pythagorean fuzzy sets based on Pythagorean fuzzy points and
Pythagorean fuzzy numbers according to Jana et al.’s approach [15, 12].
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