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POLLUTION DETECTION FOR THE SINGULAR LINEAR

PARABOLIC EQUATION
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Abstract. In this work, we are concerned by the problem of identifica-

tion of noisy terms which arise in singular problem as for remote sensing

problems, and which are modeled by a linear singular parabolic equation.
For the reason of missing some data that could be arisen when using the

traditional sentinel method, the later will be changed by a new sentinel

method for attaining the same purpose. Such new method is a particu-
lar least square-like method which permits one to distinguish between the

missing terms and the pollution terms. In particular, a sentinel method

will be given here in its more realistic setting for singular parabolic prob-
lems, where in this case, the observation and the control have their support

in different open sets. The problem of finding a new sentinel is equivalent
to finding singular optimality system of the least square control for the

parabolic equation that we solve.

AMS Mathematics Subject Classification : 35K67, 93B05, 49J20.

Key words and phrases : Pollution detection, singular parabolic equation,
controllability, theory of control.

1. Introduction

The detection of the noisy terms arise typically in singular parabolic problems
as for remote sensing with active sensors or passive sensors as well. As it is well
known, these problems generate heat spread, which can be modeled by a linear
parabolic equation [1, 2]. The electromagnetic radiation that is reflected back
from patterns of the Earth surface is measured by remote sensing tools. The
measurements which consist of the evaluation of different wavelengths allow to
distinguish the type of ocean or land covering; the water, the vegetation and the
soil in general [3, 4]. The noisy terms for which we refer to pollution terms in this
article are unknown and deterministic [5, 6]. They are found in the boundary
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of the domain for high wave numbers. The initial data for these problems are
supposed unknown too, and we do not want to find them.

The main tool to detect missing terms is the classical least square method, but
this method determines all the missing terms (the noisy terms and the missing
initial data terms). We use here a version of sentinel method back to J.-L. Lions
(1992), which permits to distinguish between all the missing terms. Here, we
want to characterize the noisy terms independently of the missing initial data
ones. It has been shown that, with the sentinel method, there is a gain of
time calculations when interested in simulations. As we will see, the problem of
finding a sentinel is equivalent to a null-controllability problem, see the general
case in the book by J.-L. Lions [7], where the control and the observation have
their support in the same open set. In our case, the sentinel theory is used in
its general setting since we consider two different open sets for the control and
the observation. This is a new issue for singular problems in general.

Optimal control of distributed parameter systems governed by a system of
parabolic equations is of special importance for propagation processing problems
which are generally expressed by the resolution of the heat equation [8, 9, 10, 11,
12]. The use of these equations may however leave a gap between the theoretical
solutions and the experimental ones, then the use of optimal control allows to
fill the gap, as it permits to optimize the distance between the two solutions, see
[13, 14, 15, 16]. As an immediate application, the existence of a discriminating
sentinel for a nonlinear singular parabolic equation can be discussed, as we will
see later on. It should be observed that the backward problem appears under
this form in the Lions sentinel theory [7]. The works by A. Omrane [17] as well
as by Miloudi et al. in [18] and [19] are examples on parabolic equations for
which in the later one the control with constraints problem was solved for the
heat equation using a well adapted Carleman inequality, see [20].

From above perspective, we will prove in this work that the sentinel problem
is equivalent to a null-controllability one. This is because that the general null-
controllability problem for the heat equation is well understood, see [21, 22].
Indeed, with assuming the geometric control condition introduced by [22], one
can establish an observation estimate which yields by the HUM method of Lions
[21]. The geometric control condition is a microlocal making a like to bicharacter-
istic rays of the heat operator. Moreover, it is equivalent to exact controllability
of the linear heat equation with stability that is considered according to small
perturbations. From this point of view, we aim also to state a more general
singular null-controllability problem in this article.

The paper is organized as follows. In Section 2, we give an application to
the sentinel theory of Lions for nonlinear heat problems with incomplete data,
and show the existence of a nontrivial sentinel for the heat equation, where the
control and observation have their supports in two different open sets. In Sec-
tion 3, we state and prove the singular null-controllability under the constraints
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which corresponds to the search of discriminating sentinels. The case of a dis-
criminating sentinel is discussed in Section 4, whereas the final section presents
the conclusions of this work.

2. Towards a sentinel problem

Let Ω be a bounded open subset of Rd with boundary Γ of class C2, where
d ∈ N∗. For T > 0, we set Q = (0, T )× Ω, Σ = (0, T )× Γ, and we consider the
following nonlinear heat problem in several dimensions:

∂y

∂t
−∆y + f(y) = F in Q, (1)

with the following initial data of incomplete information:

y(T ) = y0 + τ ŷ0 in Ω, (2)

where f being a C1 function, y0 ∈ L2(Ω) is a known function is and τ ŷ0 is
unknown (see Lions [7] page 156). Without loss of generality, we may consider
the above problem for all ŷ0 such that

∥∥ŷ0∥∥
L2 ≤ 1 and τ is small. In this regard,

the noisy terms appear in a part of the domain as follows:

F = ξ0 + λξ̂0 in Q, (3)

where ξ0 ∈ L2(Q) is given, and where λξ̂0 is not known too.

The goal here is to find a method to estimate the noise (missing) term λξ̂0.
Actually, there are several methods can be used for attaining this purpose. The
famous one is the least squares method. However with this method, the pollution

and initial unknown terms τ ŷ0 and λξ̂0 are computed together, and we can not
really separate them, see [7, 18]. Here, we use the sentinel method of Lions
that can detect one parameter independently of the others. To have a chance
to detect pollution, we observe the system in some open subset O ⊂ Ω called
observatory, during time T . We denote by yobs this observation, which can be
formulated by:

yobs = m0 +

N∑
i=1

βimi, (4)

where the functions m0,m1, · · · ,mN are known in L2(O × (0, T )), but βi are
unknown real numbers in which they are assumed here ”small”. Actually, the
terms βi are called the interference (or noisy) terms as well. Without loss of
generality, we can assume that the functions mi are linearly independent for
1 ≤ i ≤ N .

Remark 2.1. In the case of the heat equation, the observatory O can be chosen
arbitrarily small, as well as the final time T .

We now introduce the notion of sentinel by following the definition in [17, 19].
In this definition, the observation and the control may have different support
sets but are not disjoined. Indeed, one can observe somewhere in the domain,
and can control in another part of the domain Ω. This natural definition leads to
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nontrivial controllability problems. In this regard, we let h0 be a given function
on (0, T )×O such that:

h0 ≥ 0,

∫ T

0

∫
O
h0 dxdt = 1. (5)

Besides, let ω be an open and non empty subset of Ω. For a control function
u ∈ L2((0, T )× ω), we introduce the following functional equation:

S(λ, τ) =
∫ T

0

∫
O
h0 y(t, x;λ, τ) dxdt+

∫ T

0

∫
ω

u y(t, x;λ, τ) dxdt. (6)

We shall say that S defines a sentinel (for the system (1-3) and (5)) if there
exists u such that the pair (u, S) satisfies to the following two conditions:

• The sentinel S is insensitive at first-order with respect to the missing
terms τ ŷ0, which means:

∂S
∂τ

(0, 0) = 0, (7)

• The control u is of minimal norm in L2((0, T )× ω) in the sense:

∥u∥L2((0,T )×ω) = inf
v∈L2((0,T )×ω)

∥v∥. (8)

Remark 2.2. The classical point of view of Lions lies on ho and u, having their
support in the same open set of observation O = ω. In this case, the question of
existence of a sentinel such that condition (7) holds is evident. Indeed, ho = −u
is a solution, and the only question is the calculus of the optimal control (8).

The point of view considered here is a sentinel notion defined by the function
ho, an observation yobs and a control u, but with ho having its support in O and
u of support in ω with ω ̸= O. In this case, the existence of a sentinel is not
guaranteed. However, in order to deal with the adjoint state or the controllability
problem, we denote by yτ = ∂y

∂τ (0, 0), for λ = τ = 0. Then yτ satisfies to the
following system: ∣∣∣∣∣∣

Ξa0
yτ = 0 in Q,

yτ = 0 on Σ,
yτ (0) = ŷT in Ω,

(9)

where Ξa0
given by:

Ξa0 =
∂

∂t
−

d∑
j=1

∂2

∂x2
j

+ a0 I, (10)

and Ξ∗
a0

given by:

Ξ∗
a0

= − ∂

∂t
−

d∑
j=1

∂2

∂x2
j

+ a0 I, (11)

which represents the d’Alembertian with potential:

a0 := f ′(yo) ∈ L∞(Q), (12)
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where a0 is a real-valued function and yo = y(t, x; 0, 0). It is well known
that these linear problems admits each one a unique solution in the space
C([0,T ], H1

0 (Ω)) ∩ C1([0, T ], L2(Ω)). We immediately deduce that (7) is equiva-
lent to the following equation:∫ T

0

∫
O
h0 yτ (t, x;λ, τ) dxdt+

∫ T

0

∫
ω

w yτ (t, x;λ, τ) dxdt = 0. (13)

Proposition 2.1. Let q be the solution to the ill-posed backward problem: Ξ∗
a0
q = hoχO + wχω in Q,

q = 0 on Σ,
q(0) = 0 in Ω.

(14)

Then, the existence of a sentinel for (1-3), insensitive to the missing data (i.e.
such that (13) hold), is equivalent to the null-controllability problem (14) together
with

q(T ) = 0 in Ω. (15)

Proof. To prove this proposition, we first multiply (14) by yτ , and then integrate
the result by parts to obtain:∫

Q

Ξa0
q yτ dxdt =

∫
Q

qΞa0
yτ dxdt+

∫
Ω

q(T )yτ (T ) dx−
∫
Ω

q(0)yτ (0) dx

+

∫
Σ

∂yτ
∂ν

q dσ −
∫
Σ

∂q

∂ν
yτ dσ =

∫
Q

(
hoχO + wχω

)
yτ0 dxdt.

Consequently, we have:∫
Ω

q(T )yτ (T ) dx =

∫
Q

(
hoχO + wχω

)
yτ0 dxdt.

But, yτ0 is solution to system (9). Thus q(T ) = 0 in Ω, which satisfies finally
(15). The converse of this result is obvious. □

3. Null-controllability

In this part, we consider the singular parabolic system of the form: Ξ∗
a0
q = v in Q,

q = 0 on Σ,
q(0) = q0 in Ω,

(16)

where the d’Alembertian Ξ∗
a0

is given by (11) with potential a0 given in (12). It

is well known that given v ∈subspace∈ L1([0, T ], L2(Ω)) and q0 ∈ H1
0 (Ω). In

fact, problem (16) admits the following unique solution:

q ∈ C([0,T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)).

Now, we state the problem of exact controllability for solutions of system (16).
Let ω be an open subset of Ω. Denote by (0, T ) × ω the interior cylinder and
χω its characteristic function. Given q0 ∈ H1

0 (Ω), the goal is to find a source
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v in L2((0, T ) × ω) such that the unique solution q of system (16) satisfies the
following condition:

q(T ) = 0 in Ω. (17)

The inverse problem is to determine the conductivity distribution in Ω from
boundary measurements.

4. The case of a discriminating sentinel

It is worth noticing that an application to the above result on controllability
with constraints on the control can be analyzed. Such application is the sentinel
theory of Lions for hyperbolic problems with missing data .

Definition 4.1. The sentinel S is said to be a discriminating sentinel for system
(1-4) and (5), if there exists w such that the pair (w, S) satisfies the conditions
(7-8), and if S is insensitive to interference terms βimi, i.e.,∫ T

0

∫
O
h0 mi dxdt+

∫ T

0

∫
ω

wmi dxdt = 0, 1 ≤ i ≤ N. (18)

Let K be the vector subspace generated in L2((0, T )×ω) by theN independent
functions miχω such that 1 ≤ i ≤ N . It is easy to see that there exists a unique
k0 ∈ K such that:∫ T

0

∫
O
h0 mi dxdt+

∫ T

0

∫
ω

k0 mi dxdt = 0, 1 ≤ i ≤ N.

It should be noted here that the vector space K plays the same role as in the
previous section. In addition, condition (18) is equivalent to the following form:

w − k0 = v ∈ K⊥. (19)

To sum up, the problem consisting in obtaining the control item w such
that the pair (w, S) satisfies (7) with (18) (the same as (7) with (19)). This
is equivalent to find the control item v such that the pair (v, q) satisfies the
following system: 

v ∈ K⊥,
Ξ∗
a0

q = h+ vχω in Q,
q = 0 on Σ,

q(0) = 0 in Ω,

(20)

and

q(T ) = 0 in Ω. (21)

where h = h0χO + k0χω. Hence, we are considering the original problem with
the controllability under constraints.
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4.1. Null-controllability under constraints. It should be recalled here that
K is the finite dimensional linear subspace of L2((0, T )×W ) defining the under
taken constraints. Thus, we need to consider the following hypothesis:

(A1) The couple (ω, T ) satisfies the geometric control condition.
(A2) The only element k ∈ K satisfying Ξ∗

a0
k = 0 in Q is the trivial element

k ≡ 0.

In view of the previous assumptions, we introduce in what follow another result.

Theorem 4.2. Under assumptions (A1) and (A2) and for every qT ∈ H1
0 (Ω),

there exists a constrained control function v ∈ L2((0, T )×ω) such that the state
solution q to problem  Ξ∗

a0
q = χωv in Q,

q = 0 on Σ,
q(0) = q0 in Ω,

(22)

satisfies condition (17).

Proof. For the proof of this result, a suitable version of the HUM method can
be simply used, as what it was exactly carried out in reference [17]. □

4.2. The discriminating sentinel. In this section, we aim to state and prove
a new theoretical result that deals with the existence of a discriminating sen-
tinel. The two assumptions (A1) and (A2) declared above will be very useful for
attaining our goal.

Proposition 4.3. Under assumptions (A1) and (A2), there exists a unique and
nontrivial discriminating sentinel for problem (1-4), insensitive to the missing
data τ0ŷ

0 and τ ŷ1 as well as to the noise terms βi mi, 1 ≤ i ≤ N .

Proof. From Theorem 4.2, the existence of a sentinel, insensitive to the missing
data (i.e. (7) and (19) hold) is guaranteed, as long as we prove that there exists
v ∈ K⊥ such that condition (15) holds as well. To this aim, we observe that
system (20) is equivalent to system (16) under the same constraints. Indeed, if
we solve the following system: Ξ∗

a0
z = h in Q,

z = 0 on Σ,
z(0) = 0 in Ω

and set q̄ = q − z, then q̄(0) = q(0). Aa a result, controlling the solution q or q̄
of the system: 

v ∈ K⊥,
Ξ∗
a0

q̄ = vχω in Q,
q̄ = 0 on Σ,

q̄(0) = 0 in Ω

(23)

is the same. Moreover, system (23) with constraints on the control is null-
controllable thanks to Theorem 4.2. □
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5. Conclusion

In this work, a sentinel method has been provided in its more realistic setting
for singular parabolic problems, where in this case, the observation and the
control have their support in different open sets. It has been shown that the
problem of finding a new sentinel is equivalent to finding singular optimality
system of the least square control for a parabolic equation.
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