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CHANGING RELATIONSHIP BETWEEN SETS USING

CONVOLUTION SUMS OF RESTRICTED DIVISOR

FUNCTIONS†

ISMAIL NACI CANGUL AND DAEYEOUL KIM∗

Abstract. There are real life situations in our lives where the things are
changing continuously or from time to time. It is a very important problem

for one whether to continue the existing relationship or to form a new one

after some occasions. That is, people, companies, cities, countries, etc.
may change their opinion or position rapidly. In this work, we think of the

problem of changing relationships from a mathematical point of view and
think of an answer. In some sense, we comment these changes as power

changes. Our number theoretical model will be based on this idea. Using

the convolution sum of the restricted divisor function E, we obtain the
answer to this problem.
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1. Introduction

Throughout this article, p, N, N0 and Z will denote a prime number, the set of
natural numbers, the set of positive integers and the set of integers, respectively.

There are many cases in our lives where the things change from time to time.
As a recent unfortunate example, Russia invaded Ukraine after being long term
allies with them. Earlier, Russia was allied with Ukraine, and USA was allied
with NATO. In some sense, Ukraine and Russia had a relation where there
had been a potential for change due to several historical, political, economical,
geopolitical reasons appearing in the years. For many, the war seems to have
started as Ukraine tried to join NATO which did not make Russia happy. Now,
for Ukraine, after all the mean behaviour and invasion by Russia, it is a very
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important problem whether to continue the existing relationship or to form a
new one. That is, people, companies, cities, countries, etc. may change their
opinion or position rapidly. Let us think of the problem of changing relationships
from a mathematical point of view and think of an answer. In some sense, we
can comment these changes as power changes. Our number theoretical model
will be based on this idea.

Let A, B, C and D be four sets and let the graph potential for change of B be
c times as strong as the graph potential for change of A and the graph potential
for change of D be d times as strong as the graph potential for change of C.
Assuming that each element is a square (x2, y2, z2, w2) with x ∈ A, y ∈ B,
z ∈ C and w ∈ D, first, suppose that A and B are related and C and D are
related. That is, suppose that A (resp. C) and B (resp. D) can produce the
same graph potential for change x2 + cy2 = m (resp. z2 + dw2 = n).

Consider the problem of investigating how many new relationships could be
created if four are gathered to create graph potential for change x2 + cy2 + z2 +
dw2 = l under the assumption that two sets can create some common graph
potential for change. Let us model this to make it a mathematical problem:

Problem 1.1. To make things easier, we will only deal with the case where
l = pn, c = d = 2 and m and n are also multiples of p. Let

R(pn) := {(x, y, z, w) ∈ Z4 | x2 + 2y2 + z2 + 2w2 = pn}
be the relation set of pn;

C(pn) := {(x, y, z, w) ∈ R(pn) | x2+2y2+02+2·02 = pn, 02+2·02+z2+2w2 = pn}
be the closed relation set of pn (see (C) in Fig. 1);

I(p
n
) := {(x, y, z, w) ∈ R(p

n
)−C(p

n
) | x2

+2y
2
= pm1, z

2
+2w

2
= pm2, mi (i = 1, 2) ∈ N∪{0}}

be the invariant relation set of pn (see (I) in Fig. 1); and

N(pn) := R(pn)−(C(pn)∪I(pn)) = {(x1, y1, z1, w1) ∈ R(pn) | x2
1+2y21 ̸= pm1,

z21 + 2w2
1 ̸= pm2, mi (i = 1, 2) ∈ N0}

be the new relation set of pn (see (N) in Fig. 1). Here #U denotes the number
of elements in a set U .

Find the value of #N?

Fig. 1 shows the three relationships. In order to solve Problem 1.1 easily by
means of convolution sums of divisors, we first need some mathematical nota-
tions and properties introduced below:

The Dirichlet convolution of two arithmetic functions f1 and f2 is defined by

(f1 ∗ f2)(n) =
∑
d|n

f1(d)f2(n/d),

see [11, p. 301]. An arithmetic function f2 is called an inverse of f1 if
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Figure 1. Three relationships (C,I,N)

(f1 ∗ f2)(n) = (f2 ∗ f1)(n) = I(n)

with

I(n) =

{
1 if n = 1,

0 otherwise.

In this article, we take f2 := f−1
1 . Such an arithmetic inverse function f−1

1 of f1
exists and satisfy the following equality [10, p.6]

f−1
1 (1) = 1/f1(1) and f−1

1 (n) = − 1

f1(1)

∑
d|n
d>1

f1(d)f
−1
1 (n/d) (1)

if f1(1) ̸= 0. For more properties of arithmetic functions, see [5, 7, 10, 11, 14].

For d, n ∈ N and k ∈ N0, we define

σk(n) :=
∑

d|n dk, σ(n) := σ1(n),

E(n) :=
∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1, E(n) :=
∑n−1

k=1 E(k)E(n − k),

E(n) := E(n) +
∑n−1

k=1 E(k)E(n − k), Ê(n) :=
∑

1≤k≤n−1
gcd(k,n−k)=1

E(k)E(n − k).

Here, we let E(1) = Ê(1) = 0. Usually, E(n) is often denoted by E1,3(n; 8) [4,
p.12]. However, since this symbol appears a lot in this article, it is written as
E(n) for brevity.

On the other hand, using Jacobi’s identity, we can easily show that

#{(x, y) ∈ Z2|x2 + 2y2 = n} = 2E(n) (2)
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with n ∈ N. See [4, (31.12)]. By means of Eqn. (2), Problem 1.1 is equivalent to

problem of showing 4Ê(pn) = 4
∑

1≤k≤pn−1
gcd(k,pn−k)=1

E(k)E(pn − k). In more detail,

we have

R(pn) = C(pn) ∪ I(pn) ∪N(pn),

#R(pn) = 4E(pn), #C(pn) = 4E(pn), #N(pn) = 4Ê(pn)

and
#I(pn) = #E(pn)−#C(pn)−#N(pn).

Using the convolution sum of the restricted divisor function E, we obtain the
answer to Problem 1.1 as follows:

Theorem 1.2. Let ϵ(n) =

{
0 if n ≡ 1 (mod 2),

1 if n ≡ 0 (mod 2).

(a) If p ≡ 1, 3(mod 8) is an odd prime, then

#N(p
n
) =


4(p − 1) if n = 1,

4(p − 1)(p − 2) if n = 2,

4(p − 1)(p2 − 2p + 2) if n = 3,

4(σ(pn) − 4σ(pn−1) + 7σ(pn−2) + 2(−1)ϵ(n) − 8pϵ(n)σ2(p
(n−ϵ(n)−3)/2)) if n ≥ 4

and if p ≡ 5, 7(mod 8) is an odd prime, then #N(pn) = 4pn−1(p+ 1).

(b) If n ∈ N, then

#N(2n) =


4 if n = 1,

16 if n = 2,

0 if n ≥ 3.

If it is assumed that two sets of four satisfy the sum of squares relation, then

4Ê will be the value of the new relation set. In other words, using Theorem 1.2,
Problem 1.1 is solved.

Example 1.3. ForR(3) = {(±1,±1, 0, 0), (±1, 0, 0,±1), (0,±1,±1, 0), (0, 0,±1,±1)},
we have the following sets C(3) = {(±1,±1, 0, 0), (0, 0,±1,±1)}, I(3) = { },
N(3) = {(±1, 0, 0,±1), (0,±1,±1, 0), (±1, 0, 0,∓1), (0,±1,∓1, 0)} and hence

#R(3) = 4E(3) = 16, #C(3) = 4E(3) = 8, #N(3) = 4Ê(3) = 8, #I(3) =

4(E(3) − Ê(3) − E(3)) = 0, #R(9) = 4E(9) = 52, #C(9) = 4E(9) = 12,

#N(9) = 4Ê(9) = 8 and #I(9) = 32. Fig. 2 (resp. Fig. 3) shows the whole of
R(3) (resp. R(9)). In Fig. 2, (A) and (B) belong to the closed relation, and (C)
and (D) belong to the new relation. In Fig. 3, (E) ∼(H) belong to the closed
relation, (I) and (J) belong to the new relation and (K) and (L) belong to the
invariant relation.

Remark. If p is an odd prime and n is big enough, then the number of new
relations #N(pn) is approximately 4pn. However, in the case of p = 2, no matter
how large n is, there are no new relations #N(2n). Here, in the case of p = 2,
it is an example that mathematically informs us that there may be a structure
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Figure 2. Relation set of 3

Figure 3. Relation set of 9

N(pα) 2 3 5 7 11 13

1 4 8 24 32 40 56
2 16 8 120 224 360 728
3 0 40 600 1568 4040 9464
4 0 104 3000 10976 44360 123032
5 0 328 15000 76832 488040 1599416
6 0 968 75000 537824 5368360 20792408
7 0 2920 375000 3764768 59052040 270301304
8 0 8744 1875000 26353376 649572360 3513916952
9 0 26248 9375000 184473632 7145296040 45680920376
10 0 78728 46875000 1291315424 78598256360 593851964888

Table 1. Values of N(pα)(1 ≤ α ≤ 10) with 2 ≤ p ≤ 13.

in which a new relationship is not created even if a lot of graph potential for
change is given to the four sets. In other words, Theorem 1.2 shows that there
is a system in which a new relationship is not created even if a lot of effort is
put into it.
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In Section 2, for the case where n is odd, we find results related to E(n). In
Section 3, we obtain the inverses of E and E2 and find their properties. Finally,
in Section 4, we prove Theorem 1.2.

2. Values of E(n) and E(n)

Let q be a fixed complex number with absolute value less than 1, so that we
may write q = eπit where Im(t) > 0. Fine [4, (9.3),(18.62)] wrote that∏

n≥1

(1− qn)2

(1− 2qn cos 2u+ q2n)
= 1− 4 sinu

∑
n≥1

qn
∑
w|n

sin

(
2n

w
− w

)
u (3)

and∏
n≥1

(1− qn)4

(1− 2qn cosu′ + q2n)2
= 1− 8 sin2

u′

2

∑
N≥1

qN
∑

nk=N
n,k≥1

n cos(k − n)u′. (4)

In (3) and (4), set u = π
4 and u′ = π

2 to obtain

∏
n≥1

(1− qn)2

(1 + q2n)
= 1− 4√

2

∑
n≥1

qn
∑
w|n

sin

(
2n

w
− w

)
π

4
:=
∑
k≥0

h1(k)q
k (5)

and ∏
n≥1

(1− qn)4

(1 + q2n)2
= 1− 4

∑
N≥1

qN
∑

nk=N
n,k≥1

n cos(k − n)
π

2
:=
∑
i≥0

h2(i)q
i. (6)

Thus, by Eqns. (5) and (6),

n∑
k=0

h1(k)h1(n− k) = h2(n). (7)

The study of the convolution sum of arithmetic functions has been studied
by many researchers (see [1], [2], [3], [8], [9], [12], [13], [15] and the references
therein).The formula for the convolution sum with respect to E is written below
as it is necessary to obtain the main result of this paper.

Proposition 2.1. [6] If n = 2am ∈ N with gcd(2,m) = 1, then

h2(n) =



−4σ(n) if n ≡ 1 (mod 4),

4σ(n) if n ≡ 3 (mod 4),

0 if a = 1,

−8σ(m) if a = 2,

24σ(m) if a ≥ 3.

Using Eqn. (5), we will find E(n) term by term.
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Lemma 2.2. If n is a positive integer, then

E(n) =

{
− 1

2h1(n) if n ≡ 1, 5 (mod 8),
1
2h1(n) if n ≡ 3, 7 (mod 8).

In particular, if n ≡ 5, 7 (mod 8) then E(n) = h1(n) = 0.

Proof. First, let n ≡ 1 (mod 8) and d|n. Then d is an odd positive integer
satisfying n = d · n

d ≡ 1 (mod 8) and d ≡ n
d (mod 8). Hence sin

(
2n
d − d

)
π
4 =

sin dπ
4 . By Eqn. (5), we can write

−1

2
h1(n) =

√
2


∑
d|n

d≡1,3(mod 8)

sin

(
2n

d
− d

)
π

4
+

∑
d|n

d≡5,7(mod 8)

sin

(
2n

d
− d

)
π

4


=

√
2


∑
d|n

d≡1,3(mod 8)

sin
dπ

4
+

∑
d|n

d≡5,7(mod 8)

sin
dπ

4


=

∑
d|n

d≡1,3(mod 8)

1−
∑
d|n

d≡5,7(mod 8)

1.

(8)

Secondly, let n ≡ 3 (mod 8) and d|n. If d ≡ 1 (resp. 3, 5, 7) (mod 8), then
d
n ≡ 3(resp., 1, 7, 5)(mod 8). So, we obtain

√
2 sin

(
2n

d
− d

)
π

4
=

{
1 if d ≡ 5, 7 (mod 8),

−1 if d ≡ 1, 3 (mod 8),

and

1

2
h1(n) = −

√
2


∑
d|n

d≡1,3(mod 8)

sin

(
2n

d
− d

)
π

4
+

∑
d|n

d≡5,7(mod 8)

sin

(
2n

d
− d

)
π

4


=

∑
d|n

d≡1,3(mod 8)

1−
∑
d|n

d≡5,7(mod 8)

1.

(9)
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Thirdly, let n ≡ 5 (mod 8) and d|n. Then

−1

2
h1(n) =

√
2

∑
k=1,3,5,7

 ∑
d|n

d≡k(mod 8)

sin
kπ

4


=

∑
d|n

d≡1,3(mod 8)

1−
∑
d|n

d≡5,7(mod 8)

1.

(10)

As an easy calculation, assuming d ≡ 1 or 3 (resp. 5 or 7) (mod 8), we get n
d ≡ 5

or 7 (resp. 1 or 3) (mod 8). Therefore

#{d | d ≡ 1, 3 (mod 8)} = #{d | d ≡ 5, 7 (mod 8)}.

By Eqn. (10), − 1
2h1(n) = E(n) = 0.

Finally, let n ≡ 7 (mod 8) and d|n. Then

1

2
h1(n) = −

√
2

∑
k=1,3,5,7

 ∑
d|n

d≡k(mod 8)

sin
(k + 4)π

4


=

∑
d|n

d≡1,3(mod 8)

1−
∑
d|n

d≡5,7(mod 8)

1.

(11)

We can show that 1
2h1(n) = E(n) = 0 in the same way as in the case of n ≡ 5

(mod 8). Therefore, Lemma 2.2 is deduced by Eqns. (8)-(11). □

To compute h1(n) where n is even, we need the following lemma:

Lemma 2.3. If n is an even integer, then∑
d|n

d≡0(mod 2)

sin

(
2n

d
− d

)
π

4
= 0.

Proof. Let T1 := {d | d ≡ 0 (mod 2), d|n, 2n
d −d ≡ 2 (mod 8)} and T2 := {d | d ≡

0 (mod 2), d|n, 2n
d − d ≡ 6 (mod 8)}. It is easily checked that

2n

d
− d ≡ 0 (mod 2) if and only if d ≡ 0 (mod 2) (12)

with d|n. If f1 : T1 → T2 via f1(d) =
2n
d , then f1 is bijective and

#T1 = #T2. (13)

It is trivial that

sinnπ = 0 if n is an integer. (14)
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By Eqns. (12)-(14),

∑
d|n

d≡0(mod 2)

sin

(
2n

d
− d

)
π

4
=

∑
d|n

2n
d

−d≡0,4(mod 8)

0 +
∑
d|n

2n
d

−d≡2(mod 8)

1 −
∑
d|n

2n
d

−d≡6(mod 8)

1 = 0.

□

Lemma 2.4. If n is an even positive integer, then

E(n) =

{
− 1

2h1(n) if n ≡ 2, 6 (mod 8),
1
2h1(n) if n ≡ 0, 4 (mod 8).

Proof. By Lemma 2.3, we only need to consider the odd divisors d. If n ≡
2, 6 (mod 8) is an even integer, then

√
2 sin

(
2n

d
− d

)
π

4
=

{
1 if d ≡ 1, 3 (mod 8),

−1 if d ≡ 5, 7 (mod 8)

and

−1

2
h1(n) =

∑
d|n

d≡1,3(mod 8)

1−
∑
d|n

d≡5,7(mod 8)

1 = E(n).

If n ≡ 0, 4 (mod 8) is an even integer, then

√
2 sin

(
2n

d
− d

)
π

4
=

{
−1 if d ≡ 1, 3 (mod 8),

1 if d ≡ 5, 7 (mod 8)

and
1

2
h1(n) =

∑
d|n

d≡1,3(mod 8)

1−
∑
d|n

d≡5,7(mod 8)

1 = E(n).

□

By Lemma 2.2, 2.3 and 2.4, we get

Proposition 2.5. [6] If n ∈ N then

E(n) =

{
− 1

2h1(n) if n ≡ 1, 2, 5, 6 (mod 8),
1
2h1(n) if n ≡ 0, 3, 4, 7 (mod 8).

In particular, if n ≡ 5, 7 (mod 8) then E(n) = h1(n) = 0.

Proposition 2.6 is a well-known result [4, (31.32)], [9, Theorem 6.5] that can be
derived from the theory of the sum of squares, Jacobi theta functions, modular
forms, basic hypergeometric series, etc. The necessary case in this paper is to

find the case of Ê(pn), so the result of Proposition 2.6 is sufficient. Proposition
2.6 is revisited using the results obtained in this section.
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Proposition 2.6. Let n(>1) be an odd positive integer. Then E(n) = σ(n) −
E(n). In particular, if n ≡ 5, 7 (mod 8), then E(n) = σ(n) and

E(2t) =

{
1 if t = 1,

5 if t ≥ 2.

Proof. Let n ≡ 1 (mod 8) be a positive integer. By Proposition 2.5, we obtain

E(n) =

n−1∑
k=1

E(k)E(n− k) =

7∑
i=0

∑
1≤k<n

k≡i(mod 8)

E(k)E(n− k)

= −1

4

 ∑
1≤k<n

k≡0,1(mod 8)

h1(k)h1(n− k) +
∑

1≤k<n
k≡3,6(mod 8)

h1(k)h1(n− k)


= −1

4

n−1∑
k=1

h1(k)h1(n− k).

(15)

The last identity is obtained from the fact that h1(m) = 0 if m ≡ 5, 7 (mod 8).
By Proposition 2.1, Lemma 2.2 and (15),

n−1∑
k=1

E(k)E(n− k) = −1

4

(
n∑

k=0

h1(k)h1(n− k)− 2h1(0)h1(n)

)
= σ(n)− E(n).

In the remaining cases n ≡ 3, 5, 7 (mod 8), E(n) =
∑n−1

k=1 E(k)E(n − k) can be
obtained using the same method as n ≡ 1 (mod 8). In particular, if n ≡ 5, 7
(mod 8), then E(n) = σ(n) − E(n) = σ(n) because E(n) = 0. It is easily

obtained that
∑2−1

k=1 E(k)E(2 − k) = 1 and
∑4−1

k=1 E(k)E(4 − k) = 5. If t ≥ 3
then 2t ≡ 0 (mod 8).

Finally, we use Proposition 2.1 and Lemma 2.3 to obtain

2t−1∑
k=1

E(k)E(2t − k) =
1

4

 2t∑
k=0

h1(k)h1(2
t − k)− 2h1(0)h1(2

t)

 =
1

4
(24σ(1)− 4) = 5

in the same way as in (15). □

3. Inverse functions of E and E2

From the definition of E, we get

E(pt) =


1 if p = 2,

t+ 1 if p ≡ 1, 3 (mod 8),

1 if p ≡ 5, 7 (mod 8) and t ≡ 0 (mod 2),

0 if p ≡ 5, 7 (mod 8) and t ≡ 1 (mod 2).

(16)

Here, t ∈ N0. It is a well-known fact that E is a multiplicative function, but we
briefly prove it again in Lemma 3.1.
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Lemma 3.1. E, E2, E−1 and (E2)−1 are multiplicative functions.

Proof. Let n = 2lm with gcd(2,m) = 1. Then, it is easily checked that 2t ̸≡
1, 3, 5, 7 (mod 8) with 1 ≤ t ≤ l and d|m. By Eqn. (16), E(2lm) = E(m) =
E(2l)E(m).

To prove Lemma 3.1, we only check that E(m1m2) = E(m1)E(m2) with
gcd(m1,m2) = 1 and m1 ≡ m2 (mod 2). Let pi (1 ≤ i ≤ r) ≡ 1, 3 (mod 8) and

qj(1 ≤ j ≤ s) ≡ 5, 7 (mod 8) be distinct primes. Let n1 = pe11 · · · perr qf11 · · · qfss .
It can be easily proved that

E(n1) = 0 if and only if there exist at least one fj ≡ 1 (mod 2). (17)

For convenience, assume that f1 is odd. Let n1 = m1m2 with gcd(m1,m2) = 1.

Then either qf11 |m1 or qf11 |m2. By Eqn. (17), E(n1) = 0 and E(m1) = 0
or E(m2) = 0. So E(n1) = 0 = E(m1)E(m2). By the definition of E,

E(pe11 · · · perr ) = (e1+1) · · · (er+1) and E(pe11 · · · perr q2f11 · · · q2fuu ) = (e1+1) · · · (er+
1) = E(pe11 · · · perr ).

Thus, if m3 = pe11 · · · pett q2f11 · · · q2fvv and m4 = p
et+1

t+1 · · · perr q
2fv+1

v+1 · · · q2fss , then
E(m3m4) = (e1 + 1) · · · (er + 1) = E(m3)E(m4). Therefore, E is a multi-
plicative function. By the definition of E2, E2(m1m2) = E(m1m2)E(m1m2) =
E(m1)E(m2)E(m1)E(m2) = E2(m1)E

2(m2) with gcd(m1,m2) = 1. On the
other hand, if O1 is a multiplicative function, then O−1

1 is also a multiplicative
function. See [10, p.8]. Using this, the proof of Lemma 3.1 is completed. □

Now, consider E−1(pn) and (E2)−1(pn). It can be expressed a little differ-
ently, but for convenience, we will use E−2(m) instead of (E2)−1(m). That is,
we will use E2 ∗ (E2)−1(m) = I(m) as E2 ∗ E−2(m) = I(m). Using Eqns. (1)
and (16), we get

E−i(2t) =


1 if t = 0,

−1 if t = 1,

0 if t ≥ 2

and E−i(pt) =


1 if t = 0,

0 if t = 1,

−1 if t = 2,

0 if t ≥ 3

(18)

with p ≡ 5, 7(mod 8) and i = 1, 2. If p ≡ 1, 3(mod 8), then

E−1(pt) =


1 if t = 0,

−2 if t = 1,

1 if t = 2,

0 if t ≥ 3

and E−2(pt) =


1 if t = 0,

−4 if t = 1,

7 if t = 2,

(−1)t8 if t ≥ 3.

(19)

4. Proof of Theorem 1.2

To prove Theorem 1.2, the following Lemma 4.1 is necessary. That is, the fol-
lowing is the result giving the relationship between convolution sum and Dirichlet
convolution sum:



564 Ismail Naci Cangul and Daeyeoul Kim

Lemma 4.1. If a ∈ N0 and Ê(1) := 0, then

Ê(pa) :=
∑

1≤k≤pa−1
gcd(k,pa−k)=1

E(k)E(pa − k) =


0 if a = 0,

E(p) if a = 1,

(E−2 ∗ E)(pa) if a ≥ 2.

Proof. Since p is prime, if a = 1, then

Ê(p) :=
∑

1≤k≤p−1
gcd(k,p−k)=1

E(k)E(p− k) =

p−1∑
k=1

E(k)E(p− k) = E(p)

obviously holds. Let a (≥ 2) be a positive integer. By Lemma 3.1,

E(pa) =

pa−1∑
k=1

E(k)E(pa − k) =

a−1∑
i=0

∑
1≤k<pa−1

gcd(k,pa−k)=pi

E(k)E(pa − k)

= (E(p0))2Ê(pa) + (E(p))2Ê(pa−1) + · · ·+ (E(pa))2Ê(p0)

= (E2 ∗ Ê)(pa).

(20)

Therefore, Lemma 4.1 is proven. □

Theorem 4.2. (a) If p ≡ 1, 3 (mod 8) and n ∈ N, then

Ê(p
n
) =


p − 1 if n = 1,

(p − 1)(p − 2) if n = 2,

(p − 1)(p2 − 2p + 2) if n = 3,

σ(pn) − 4σ(pn−1) + 7σ(pn−2) + (−1)ϵ(n)2 − 8pϵ(n)σ2(p
(n−ϵ(n)−3)/2) if n ≥ 4

and if p ≡ 5, 7 (mod 8), then Ê(pn) = pn−2(p2 + 1).
(b) If n ∈ N, then

Ê(2n) =


1 if n = 1,

4 if n = 2,

0 if n ≥ 3.

Proof. (a)

Ê(p) = E(p) = σ(p)− E(p) = (p+ 1)− 2 = (p− 1),

Ê(p2) = (E−2 ∗ E)(p2) = E−2(1)E(p2) + E−2(p)E(p)

= (σ(p2)− E(p2))− 4(σ(p)− E(p))

= (p2 + p+ 1− 3)− 4(p+ 1− 2) = (p− 1)(p− 2)
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and

Ê(p3) =E−2(1)E(p3) + E−2(p)E(p2) + E−2(p2)E(p)

=(σ(p3)− E(p3))− 4(σ(p2)− E(p2)) + 7(σ(p)− E(p))

=(p− 1)(p2 − 2p+ 2).

Now, consider the case where n is a positive integer greater than or equal to 4.
Let n = 2a with a ≥ 2. Then we obtain

Ê(p2a) =(σ(p2a)− E(p2a))− 4(σ(p2a−1)− E(p2a−1))

+ 7(σ(p2a−2)− E(p2a−2))− 8

2a−3∑
k=0

(−1)k(σ(p2a−3−k)− E(p2a−3−k))

=σ(p2a)− 4σ(p2a−1) + 7σ(p2a−2) + (−E(p2a) + 4E(p2a−1)− 7E(p2a−2))

− 8

a−2∑
k=1

(σ(p2k+1)− σ(p2k)) + 8

a−2∑
k=1

(E(p2k+1)− E(p2k))− 8(σ(p)− E(p)).

It is easily checked that −E(p2a)+4E(p2a−1)−7E(p2a−2) = −8a+6, σ(p2k+1)−
σ(p2k) = p2k+1, E(p2k+1)− E(p2k) = 1 and −8(σ(p)− E(p)) = −8p+ 8. Thus,

Ê(p2a) =σ(p2a)− 4σ(p2a−1) + 7σ(p2a−2)− 8a+ 6− 8(p3 + · · ·+ p2a−3)

+ 8(a− 2)− 8p+ 8

=σ(p2a)− 4σ(p2a−1) + 7σ(p2a−2)− 8pσ2(p
a−2)− 2.

Let n = 2a − 1 be an odd integer with a ≥ 3. Similarly to the case n = 2a, we
obtain

Ê(p2a−1) =σ(p2a−1)− 4σ(p2a−2) + 7σ(p2a−3) + (−E(p2a−1) + 4E(p2a−2)− 7E(p2a−3))

− 8

a−2∑
k=1

(σ(p2k)− σ(p2k−1)) + 8

a−2∑
k=1

(E(p2k)− E(p2k−1))

=σ(p2a−1)− 4σ(p2a−2) + 7σ(p2a−3)− 8σ2(p
a−2) + 2.

Secondly, consider the case where n ≡ 5, 7 (mod 8). Then, by (18) and Lemma
4.1,

Ê(p) = E(p) = σ(p)− E(p) = σ(p) = p+ 1,

Ê(p2) = (E−2 ∗ E)(p2) = E−2(1)E(p2) + E−2(p)E(p) = σ(p2)− E(p2) = p(p+ 1),

Ê(pn) = (E−2 ∗ E)(pn) = E−2(1)E(pn) + E−2(p2)E(pn−2) = pn−2(p2 + 1)

with n ≥ 3.

(b) It is easily seen that Ê(2) = 1 and Ê(4) = 4. By Proposition 2.6, Lemma

4.1 and Eqn. (18), Ê(2n) = E−2(1)E(2n) + E−2(2)E(2n−1) = 5 − 5 = 0 with
n ≥ 3.

Finally, using (1), if we put Ê(pn) = 1
4#N(pn) in Theorem 4.2, the proof of

Theorem 1.2 is completed. □
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5. Conclusions

Number theory is a field that has been studied intensively since ancient times.
In particular, the four-square problem has been studied by many mathemati-
cians. Finding the inverse divisor function using Dirichlet convolution is not
well-known. In this article, the problem related to the changing relationship
of four sets by means of the inverse divisor function is introduced and stud-
ied as a new challenge. We believe that the results of this article could be a
source of inspiration for young mathematicians working in number theory and
for fresh researchers thinking to orient their ability in this interseting field of
mathematics.
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