DOI QR코드

DOI QR Code

ON ALGEBRA OF LACUNARY STATISTICAL LIMIT OF DOUBLE SEQUENCES IN INTUITIONISTIC FUZZY NORMED SPACE

  • SHAILENDRA PANDIT (Department of Mathematics, National Institute of technology) ;
  • AYAZ AHMAD (Department of Mathematics, National Institute of technology)
  • Received : 2022.03.05
  • Accepted : 2022.12.06
  • Published : 2023.05.30

Abstract

In 2005, Patterson studied lacunary statistical convergence of double sequences of real numbers and, in 2009, Mursaleen introduced notion of lacunary statistical convergence of single sequences in intuitionistic fuzzy normed space. The current work intends to investigate the lacunary statistical convergence of double sequences and some significant conclusions on the algebra of the lacunary statistical limit of double sequences in intuitionistic fuzzy normed space. In addition, we have studied some examples to support the definitions.

Keywords

Acknowledgement

The authors are grateful to the referee and editing team for their suggestions to improve the work's quality.

References

  1. A. Esi, V.A. Khan, M. Ahmad, Mobeen and M. Alam, Some Results on Wijsman Ideal Convergence in Intuitionistic Fuzzy Metric Spaces, Journal of Function Spaces 2020 (2020).
  2. B. Hazarika and A. Esi, Lacunary Ideal Quasi Cauchy Sequences, An. Univ. Craiova, Ser. Mat. Inf. 45 (2018), 1-12.
  3. J.A. Fridy, C. Orhan, Lacunary Statistical Convergence, Pacific J. Math. 160 (1993), 43-51. https://doi.org/10.2140/pjm.1993.160.43
  4. J.H. Park, Intuitionistic Fuzzy Metric Space, Chaos Solitons Fractals 22 (2004), 1039-1046. https://doi.org/10.1016/j.chaos.2004.02.051
  5. M. Mursaleen, S.A. Mohiuddine, On Lacunary Statistical Convergence with respect to the Intuitionistic Fuzzy Normed Space, J. Comput. Appl. Math. 233 (2009), 142-149. https://doi.org/10.1016/j.cam.2009.07.005
  6. M. Mursaleen, S.A. Mohiuddine, Statistical Convergence of Double Sequences in Intuitionistic Fuzzy Normed Space, Chaos Solitons Fractals 41 (2008), 2414-2421. https://doi.org/10.1016/j.chaos.2008.09.018
  7. N. Konwar, A. Esi and P. Debnath, New Fixed Point Theorems via Contraction Mapping in Complete Intuitionistic Fuzzy Normed Linear Space, New Math. Nat. Comput. 15 (2019), 1-19. https://doi.org/10.1142/S1793005719500017
  8. R. Patterson, E. Savas, Lacunary Statistical Convergence of Double Sequences, Math. Communion. 10 (2005), 55-61.
  9. R. Patterson, On Asymptotically Lacunary Statistically Equivalent Sequences, Thai J. Math. 4 (2006), 267-272.
  10. R. Saddati and J.H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos Solitons Fractals 27 (2006), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
  11. S. Karkaus, K. Demiric, O. Duman, Statistical Convergence on Intuitionistic Fuzzy Normed Spaces, Chaos Solitons Fractals 35 (2008), 763-769. https://doi.org/10.1016/j.chaos.2006.05.046
  12. S. Pandit, A. Ahmad, A Study on Statistical Convergence of Triple Sequences in Intuitionistic Fuzzy Normed Space, Sahand Commun. Math. Anal. 19 (2022), 1-12.
  13. S. Pandit, A. Ahmad, A. Esi, On Intuitionistic Fuzzy Metric Space and Ideal Convergence of Triple Sequence Space, Sahand Commun. Math. Anal. (2022). https://doi.org/10.22130/scma.2022.550062.1071
  14. U. Ulusu, F. Nuray, On Asymptotically Lacunary Statistical Equivalent Set Sequences, J. Math. (2013).
  15. U. Ulusu, F. Nuray, Lacunary Statistical Convergence of Sequence of Sets, Progr. Appl. Math. 4 (2012), 99-109.
  16. V.A. Khan, Yasmeen, A. Esi and H. Fatima, Intuitionistic Fuzzy I-Convergent Double Sequence Spaces Defined by Compact Operator and Modulus Function, J. Intell. Fuzzy Systems 33 (2017), 3905-3911.