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APPROXIMATION OF DRYGAS FUNCTIONAL EQUATION

IN QUASI-BANACH SPACE†

RAVINDER KUMAR SHARMA∗, SUMIT CHANDOK

Abstract. In this paper, we investigate the Hyers-Ulam-Rassias stability

for a Drygas functional equation

g(u+ v) + g(u− v) = 2g(u) + g(v) + g(−v)

in the setting of quasi-Banach space using fixed point approach. Also, we
give general results on hyperstability of a Drygas functional equation. The

results obtain in this paper extend various previously known results in the

setting of quasi-Banach space. Some examples are also illustrated.
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1. Introduction and Preliminaries

The theory of functional equations is a vast area of non-linear analysis which is
rather hard to explore. Functional equations find many applications in the study
of statistics, geometry, game theory, measure theory, dynamics, economics, and
many other allied fields. The study of solutions and stability results of functional
equations is a hot topic in the research field of analysis. The stability results of
functional equations are employed in the non-linear analysis, especially in fixed
point theory. The stability results are used to study the asymptotic properties
of additive mappings.

In the theory of Ulam’s stability, one can find efficient tools to evaluate the
errors, that is, to study the existence of an exact solution of the perturbed func-
tional equation which is not far from the given function. In 1940, the stability
problem for the functional equations was first raised by Ulam [34]. Hyers [18]
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gave an affirmative partial answer to Ulam in Banach space. After that, Aoki [5]
and Rassias [29] generalized Hyers theorem for additive and linear mapping by
considering an unbounded Cauchy difference. In 1994, Găvruta[16] generalized
Rassias’ theorem and discussed the stability of linear functional equations.

A functional equation is hyperstable if a function satisfying this functional
equation approximately is a true solution of it. In 1949, Bourgin [8] gave the first
hyperstability result and concerned the ring homomorphisms. The hyperstability
results of the several functional equations in the literature have been studied
by many authors in recent years, (see [1] [2], [3], [6], [10], [11], [17], [22], and
references cited therein).

The quasi-normed space is one of the interesting generalizations of the normed
space (see [20], [21]). The difference between a norm and quasi-norm is that the
modulus of concavity of a quasi-norm is greater than equal to 1, while that
of a norm is equal to 1. The quasi-norm is not continuous in general, while
a norm is always continuous. However, every p-norm is a continuous quasi-
norm. By the Aoki-Rolewicz theorem [24] (see also [7]), each quasi-norm is
equivalent to some p-norm. It is important to emphasize that the standard basic
results of Banach space theory, such as the Uniform Boundedness Principle,
Open Mapping Theorem, and Closed Graph Theorem, which depend only on
completeness, apply to quasi-normed spaces. However, applications of convexity,
such as the Hahn-Banach Theorem, are not applicable (see [20], page 1102).

Various authors study the stability problems of many different functional
equations in the setting of quasi-normed space (see, for example, [13, 15, 25, 26]).
Motivated by these, we investigate the stability of Drygas functional equation
in quasi-normed space.

Now we present the basic notions and properties which are useful in the next
section.

Throughout this paper, N stands for the set of natural numbers, Z stands for
the set of integers, and R stands for the set of reals. Let R+ := [0,∞) be the set
of nonnegative real numbers and Y X denotes the family of all mappings from
a nonempty set X into a nonempty set Y .

Definition 1.1. (see [7], [24]) A quasi-norm ∥.∥ is a real-valued function on a
linear space X satisfying the following axioms:

(1) ∥ u ∥ ≥ 0 for all u ∈ X and ∥ u ∥ = 0 iff u = 0 ;
(2) ∥ λu ∥ = | λ | . ∥ u ∥ for all λ ∈ R and all u ∈ X ;
(3) there is a constant K ≥ 1 such that ∥ u+ v ∥ ≤ K(∥ u ∥ + ∥ v ∥) for all

u, v ∈ X .

The pair (X , ∥ . ∥) is called a quasi-normed space if ∥ . ∥ is a quasi-norm on X .
A quasi-Banach space is a complete quasi-normed space.
A quasi-norm ∥ . ∥ is called a p-norm (0 < p ≤ 1) if

∥ u+ v ∥p ≤∥ u ∥p + ∥ v ∥p,
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for all u, v ∈ X . In this case, a quasi-Banach space is called a p-Banach space.
Given a p-norm, the formula d(u, v) := ∥ u−v ∥p gives us a translation invariant
metric on X . By the Aoki-Rolewicz theorem [24] (see also [7]), each quasi-norm
is equivalent to some p-norm.

Remark 1.1. [4] The sequence space X = ℓp, 0 < p < 1, with the function

∥u∥ =

( ∞∑
i=1

| ui |p
) 1

p

is not a normed space, because the condition triangle inequality of the norm is
not satisfied. To explain this remark, we consider the following example.

Example 1.2. Suppose that sequence space X = ℓ
1
2 , and

u = {ui} = {0, 1, 0, 0, 0, ...} ∈ ℓ
1
2 and v = {vi} = {0, 0, 2, 0, 0, ...} ∈ ℓ

1
2 .

Then we have

∥u+ v∥ =

( ∞∑
i=1

| ui + vi |1/2
)2

= (1 +
√
2)2

and

∥u∥+ ∥v∥ =

( ∞∑
i=1

| ui |1/2
)2

+

( ∞∑
i=1

| vi |1/2
)2

= 3.

It is clear that

∥u+ v∥ > ∥u∥+ ∥v∥ .

Thus, the space ℓ
1
2 is not a normed space.

Example 1.3. The sequence space X = ℓp, 0 < p < 1, with the function

∥u∥ =

( ∞∑
i=1

| ui |p
) 1

p

is a quasi-Banach space (see [4]).

Theorem 1.4. ([23], Theorem 1). Let (Y , ∥.∥) be a quasi-normed space,
p = log2K 2 with K ≥ 1 and

|||u||| = inf{

 n∑
j=1

∥uj∥p
 1

p

|u =

n∑
j=1

uj , uj ∈ Y, n ≥ 1},

for all u ∈ Y . Then |||.||| is a p-norm on Y , that is for all u, v ∈ Y ,

|||u+ v|||p ≤ |||u|||p + |||v|||p. (1)

Moreover, for all u ∈ Y ,

1

2K
∥u∥ ≤ |||u||| ≤ ∥u∥ . (2)
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If ∥.∥ is a norm, then p = 1 and |||.||| = ∥.∥.

Definition 1.5. (see [32]) Let X be a nonempty set, Y be a normed space,
ε ∈ RX n

+ and V1,V2 be operators mapping from a non empty set D ⊂ Y X into

Y X n

. We say that the operator’s equation

V1φ(u1, u2, ..., un) = V2φ(u1, u2, ..., un), (3)

for u1, u2, ..., un ∈ X is ε−hyperstable provided that every φ0 ∈ D which satis-
fies

∥ V1φ0(u1, u2, ..., un)− V2φ0(u1, u2, ..., un) ∥ ≤ ε(u1, u2, ..., un)

fulfils the equation (3).

Theorem 1.6. ([9], Theorem 1)

(1) Let X be a nonempty set, (Y , d) be a complete metric space,
(2) g1, g2, ..., gk : X → X and l1, l2, ..., lk : X → R+ be given mappings.
(3) Let Λ : RX

+ → RX
+ be a linear operator defined by

Λδ(u) :=

k∑
i=1

δ(gi(u)), (4)

for δ ∈ RX
+ and u ∈ X .

(4) If T : Y X → Y X is an operator satisfying the inequality

d(T ξ(u), T µ(u)) ≤
k∑

i=1

li(u)d(ξ(gi(u)), µ(gi(u))), (5)

for all ξ, µ ∈ Y X , u ∈ X .
(5) There exist ε : X → R+ and a mapping φ : X → Y satisfy

d(T φ(u), φ(u)) ≤ ε(u)

and for every u ∈ X ,

ε∗(u) :=

∞∑
n=0

Λnε(u) <∞.

Then for every u ∈ X , the limit

ψ(u) := lim
n→∞

T nφ(u)

exists and the function ψ ∈ Y X so defined is the unique fixed point of T with

d(φ(u), ψ(u)) ≤ ε∗(u),

for all u ∈ X .

Using the concept of the papers [7, 9], Dung et al. [13] proved the following
result.

Theorem 1.7. [13] Suppose that
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(1) X is a nonempty set, Y is a quasi-Banach space and T : Y X → Y X

is a given function .
(2) There exist g1, g2, ..., gk : X → X and l1, l2, ..., lk : X → R+ such that

for all ξ, µ ∈ Y X , and for all u ∈ X

∥ T ξ(u)− T µ(u) ∥≤
k∑

i=1

li(u) ∥ (ξ − µ)gi(u) ∥, (6)

(3) There exist function ε : X → R+ and φ : X → Y satisfy conditions

∥ T φ(u)− φ(u) ∥≤ ε(u), (7)

for every u ∈ X .
(4) For every u ∈ X , and θ = log2K 2, with K ≥ 1,

ε∗(u) =

∞∑
n=0

(Λnε)
θ
(u) <∞, (8)

where Λ : RX
+ → RX

+ be a linear operator defined by

Λδ(u) :=

k∑
i=1

li(u)δ(gi(u)), (9)

for δ ∈ RX
+ and u ∈ X .

Then we have

(5) For every u ∈ X , the limit

lim
n→∞

T nφ(u) = ψ(u), (10)

exists and the function ψ : X → Y , so defined a fixed point T satisfying

∥ φ(u)− ψ(u) ∥θ≤ 4ε∗(u), (11)

for all u ∈ X .
(6) For every u ∈ X , if

ε∗(u) ≤

(
M

∞∑
n=1

(Λnε) (u)

)θ

<∞, (12)

for some positive real number M , then the fixed point of T is unique.

To obtain a Jordan and Von Neumann type characterization theorem for
the quasi-inner-product spaces, Drygas [12] consider the following functional
equation

g(u) + g(v) = g(u− v) + {g
(
u+ v

2

)
− g

(
u− v

2

)
}, (13)

for all u, v ∈ R, which can be reduced to the following equation (see, [30], Remark
9.2, pp. 131)

g(u+ v) + g(u− v) = 2g(u) + g(v) + g(−v), (14)
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for all u, v ∈ R. This equation is known in the literature as Drygas equation and
is a generalization of the quadratic functional equation

g(u+ v) + g(u− v) = 2g(u) + 2g(v), (15)

for all u, v ∈ R.
The general solution of Drygas equation was given by Ebanks et al. [14].

It has the form g(u) = H(u) + Q(v) for all u ∈ R, where H : R → R is an
additive function and Q : R → R is a quadratic function (see also [19]). A set-
valued version of Drygas equation was considered by Smajdor [33]. Recently,
hyperstability of a Drygas functional equation studied by various authors see
[27], [32], [28] and [31].

In this paper, we discuss the generalized Hyers-Ulam-Rassias stability prob-
lem for a Drygas functional equation (14) in the setting of quasi-Banach spaces
by using Theorem 1.7. Also, we obtain some hyperstability results for this equa-
tion. Our results extend the corresponding results of Sirouni et al. [32].

2. Main Result

Throughout in this section X is a nonempty set, we write X0 := X − {0},
and we denoted by Aut(X ) for the family of all automorphisms of X . The
identity function on X will be denoted by IdX , and for each m ∈ X X we write
mu = m(u) for u ∈ X and we defined −m by −mu := −m(u), 2mu = mu+mu
and m′ = m′u := (IdX −m)u = u−mu for u ∈ X .

Theorem 2.1. Let X be a quasi-normed space and Y be a quasi-Banach space.
Assume that g : X → Y is a mapping such that

||g(u+ v) + g(u− v)− 2 g(u)− g(v)− g(−v)|| ≤ ε(u, v), (16)

where ε : X0 × X0 → [0,∞], u, v ∈ X0 such that u+ v ̸= 0 and u− v ̸= 0.
Assume that

l(X ) := {m ∈ Aut(X ) : m,−m,m′, (IdX − 2m) ∈ Aut(X ), αm < 1} (17)

is an nonempty set, where

αm := 2Kλ(m′) +K2λ(m) +K3λ(−m) +K3λ(IdX − 2m),

λ(m) := inf{t ∈ R+ : ε(mu,mv) ≤ tε(u, v) ∀u, v ∈ X0},
for m ∈ Aut(X ),K ≥ 1.

Then, for each non empty subset A ⊂ l(X ) such that

a ◦ b = b ◦ a, (a, b ∈ A), (18)

there exists a unique function D : X → Y satisfying (14) and

∥ D(u)− g(u) ∥θ≤ 4ε∗(u), (19)

for all u ∈ X0, where θ = log2K 2 and ε∗(u) := inf
{

εθ(m′u,mu)
1−αθ

m
: m ∈ A

}
.
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Proof. Fix m ∈ A. Replacing u by m′u and v by mu in (16), we have

∥g(u) + g((IdX − 2m)u)− 2g(m′u)− g(mu)− g(−mu)∥ ≤ ε(m′u,mu)

:= εm(u), (20)

for all u ∈ X0. We define the operators Tm : Y X0 → Y X0 and Λm : RX0
+ → RX0

+

by

Tmξ(u) := 2ξ(m′u) + ξ(mu) + ξ(−mu)− ξ((IdX − 2m)u) (21)

and

Λmδ(u) := 2Kδ(m′u) +K2δ(mu) +K3δ(−mu) +K3δ((IdX − 2m)u), (22)

for all u ∈ X0, ξ ∈ Y X0 and δ ∈ RX0
+ .

Then (20) becomes ∥g(u)− Tmg(u)∥ ≤ εm(u), for all u ∈ X0. The operator Λm

has the form given by (9) with s = 4 and g1(u) = m′u, g2(u) = mu, g3(u) =
−mu, g4(u) = (IdX − 2m)u, l1(u) = 2K, l2(u) = K2 and l3(u) = l4(u) = K3

for all u ∈ X0. Further, we have

||Tmξ(u)− Tmµ(u)||
= ||2ξ(m′u) + ξ(mu) + ξ(−mu)− ξ((IdX − 2m)u)− 2µ(m′u)

− µ(mu)− µ(−mu) + µ((IdX − 2m)u)||
≤ 2K||ξ(m′u)− µ(m′u)||+K2||ξ(mu)− µ(mu)||
+K3||ξ(−mu)− µ(−mu)||+K3||ξ((IdX − 2m)u)

− µ((IdX − 2m)u)||,

=

4∑
i=0

li(u) ∥ ξ(gi(u))− µ(gi(u)) ∥,

for all u ∈ X0 and ξ, µ ∈ Y X0 . Using the definition of λ(m), ε(mu,mv) ≤
λ(m)ε(m′u,mu) for all u, v ∈ X0 we have to show that Λn

mεm(u) ≤ αn
mε(m

′u,mu)
for all u ∈ X0, where αm = 2Kλ(m′)+K2λ(m)+K3λ(−m)+K3λ(idX − 2m).

If n = 0, then εm(u) = ε(m′u,mu). If n = 1, we have

Λmε(u)

= 2Kεm(m′u) +K2εm(mu) +K3εm(−mu)
+K3εm((idX − 2m)u)

= 2Kε (m′(m′u),m(m′u)) +K2ε (m′(mu),m(mu))

+K3ε (m′(−mu,m(−mu))
+K3ε (m′((IdX − 2m)u),m((IdX − 2m)u))

= 2Kε (m′(m′u),m′(mu)) +K2ε (m(m′u),m(mu))

+K3ε (−m(m′u),−m(mu))
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+K3ε ((IdX − 2m)(m′(u), (IdX − 2m)(mu))

≤ 2Kλ(m′)ε(m′u,mu) +K2λ(m)ε(m′u,mu)

+K3λ(−m)ε(m′u,mu) +K3λ(IdX − 2m)ε(m′u,mu)

= 2Kλ(m′) +K2λ(m) +K3λ(−m)

+K3λ(IdX − 2m)ε(m′u,mu)

= αmε(m
′u,mu).

Now, further, if r = 2, we have

Λ2εm(u)

= Λ [Λεm(u)]

= 2KΛmεm(m′u) +K2Λmεm(mu) +K3Λmεm(−mx)
+K3Λmεm((IdX − 2m)u)

= 2Kαmε (m
′(m′u),m(m′u)) +K2αmε (m

′(mu),m(mu))

+K3αmε (m
′(−mu,m(−mu)))

+K3ε (m′((IdX − 2m)u),m((IdX − 2m)u))

= 2Kαmε (m
′(m′u),m′(mu)) +K2αmε (m(m′u),m(mu))

+K3αmε (−m(m′u),−m(mu))

+K3αmε ((IdX − 2m)(m′u), (IdX − 2m)(mu))

≤ 2Kαmλ(m
′)ε(m′u,mu) +K2αmλ(m)ε(m′u,mu)

+K3αmλ(−m)ε(m′u,mu) +K3λ(IdX − 2m)ε(m′u,mu)

= αm(2Kλ(m′) +K2λ(m) +K3λ(−m)

+K3λ(IdX − 2m)) ε(m′u,mu)

= α2
mε(m

′u,mu).

Proceeding on the similar lines, we get

Λn
mεm(x) ≤ αn

mε(m
′u,mu), (23)

for all u ∈ X0 and n ∈ N0. Hence

ε∗(u) =

∞∑
n=0

(Λn
mεm)

θ
(u) ≤ εθ(m′u,mu)

∞∑
r=0

αnθ
m =

εθ(m′u,mu)

1− αθ
m

<∞,

for all u ∈ X0. Therefore by the Theorem 1.7, there exists a solution Du : X →
Y of the equation

Dm(u) = 2Dm(m′u) +Dm(mu) +Dm(−mu)−Dm((IdX − 2m)u), (24)

for all u ∈ X0, which is a fixed point of Tm such that

∥Dm(u)− g(u)∥θ ≤ 4ε∗(u), (25)
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for all u ∈ X0. Moreover, Dm(u) = lim
r→∞

T r
mg(u) for all u ∈ X0.

Now, to prove that Dm satisfies the functional equation (14) on X0, we have
to prove the following inequality

∥ T r
mg(u+ v) + T r

mg(u− v)− 2T r
mg(u)− T r

mg(v)− T r
mg(−v) ∥

≤ αr
mε(u, v), (26)

for all u, v ∈ X0 such that u + v ̸= 0, u − v ̸= 0, and r ∈ N0. Indeed if r = 0
then (26) is simply (16). So we suppose that (26) holds for r ∈ N and u, v ∈ X0

such that u+ v ̸= 0, u− v ̸= 0. Then from (21) and the triangle inequality, we
get

∥ T r+1
m g(u+ v) + T r+1

m g(u− v)− 2T r+1
m g(u)− T r+1

m g(v)

− T r+1
m g(−v) ∥

=∥ 2T r
mg(m

′(u+ v)) + T r
mg(m(u+ v)) + T r

mg(−m(u+ v))

− T r
mg((IdX − 2m)(u+ v)) + 2T r

mg(m
′(u− v)) + T r

mg(m(u− v))

+ T r
mg(−m(u− v))− T r

mg((IdX − 2m)(u− v))− 4T r
mg(m

′(u))

− 2T r
mg(m(u))− 2T r

mg(−m(u)) + 2T r
mg((IdX − 2m)(u))

− 2T r
mg(m

′(v))− T r
mg(m(v))− T r

mg(−m(v))

+ T r
mg((IdX − 2m)(v))− 2T r

mg(m
′(−v))− T r

mg(m(−v))
− T r

mg(−m(−v)) + T r
mg((IdX − 2m)(−v)) ∥

≤ 2K ∥ T r
mg(m

′(u+ v)) + T r
mg(m

′(u− v))− 2T r
mg(m

′(u))

− T r
mg(m

′(v))− T r
mg(m

′(−v)) ∥
+K2 ∥ T r

mg(m(u+ v)) + T r
mg(m(u− v))− 2T r

mg(m(u))

− T r
mg(m(v))− T r

mg(m(−v) ∥
+K3 ∥ T r

mg(−m(u+ v)) + T r
mg(−m(u− v))− 2T r

mg(−m(u))

− T r
mg(−m(v))− T r

mg(−m(−v) ∥
+K3 ∥ T r

mg((IdX − 2m)(u+ v)) + T r
mg((IdX − 2m)(u− v))

− 2T r
mg((IdX − 2m)(u))− T r

mg((IdX − 2m)(v))

− T r
mg((IdX − 2m)(−v) ∥

≤ αr
m[2Kε(m′u,m′v) +K2ε(mu,mv) +K3ε(−mu,−mv)

+K3ε((IdX − 2m)u, (IdX − 2m)v)]

≤ αr
m[2Kλ(m′) +K2λ(m) +K3λ(−m) +K3λ(Idx − 2m)]ε(u, v)

= αr+1
m ε(u, v).
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By induction, we have shown that (26) holds for all r ∈ N. Therefore from (2)
and (26), we have

|||T r
mg(u+ v) + T r

mg(u− v)− 2T r
mg(u)− T r

mg(v)− T r
u g(−v)|||θ

≤ Krθαrθ
mε

θ(u, v).
(27)

Letting r → ∞ in (27) and using the definition of l(X ), we have

Dm(u+ v) +Dm(u− v) = 2Dm(u) +Dm(v) +Dm(−v), (28)

for all u, v ∈ X0. Thus we have prove that for every for m ∈ A there exists a
function Dm : X0 → Y which is the solution of functional equation (14) on X0

and satisfies

||g(u)−Dm(u)||θ ≤ 4

(
εθ(m′u,mu)

1− αθ
m

)
= 4ε∗(u),

for all u ∈ X0.
Now, we prove that Dm = Dq for all m, q ∈ A. Fix m, q and note that Dq

satisfies (25) with m replaced by q. Hence by replacing (u, v) with (m′u,mu) in
(28) and using (1) and (2), we get TDj = Dj , for j = m, q and

|||Dm(u)−Dq(u)|||θ ≤ |||Dm(u)− g(u)|||θ + |||Dq(u)− g(u)|||θ

≤
(
4εθm(u)

1− αθ
m

)
+

(
4εθq(u)

1− αθ
q

)
,

for all u ∈ X0. It follows from the linearity of Λ and (23) that

|||Dm(u)−Dq(u)|||θ = |||T nDm(u)− T nDq(u)|||θ

≤ 4

(
Λnεθm(u)

1− αθ
m

)
+ 4

(
Λnεθq(u)

1− αθ
q

)
≤ (αm)nUm(u) + (αq)

nUq(u),

where Um(u) = 4
εθm(u)
1−αθ

m
for all u ∈ X0 and n ∈ N. Letting n → ∞, we get

Dm = Dq = D. Thus, we have

∥g(u)−D(u)∥θ ≤ Um(u),

for all u ∈ X0,m ∈ A. Thus, we derive (19). Due to (28), it is easy to notice
that D is a solution of (14). Now to prove the uniqueness of the mapping D,
let us assume that there exists a mapping D′ : X → Y which satisfies (14) and
inequality

∥g(u)−D′(u)∥θ ≤ 4ε∗(u).

Using(2), we have

|||D(u)−D′(u)|||θ ≤ 8ε∗(u).
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Further T D′(u) = D′(u) for all u ∈ X0. Consequently, with a fixed m ∈ A

|||D(u)−D′(u)|||θ = |||T nD(u)− T nD′(u)|||θ

≤ 8Λnε∗(u)

≤ 8Λnεθm(u)

1− αθ
m

≤ 8αn
mε

θ
m(u)

1− αθ
m

,

for all u ∈ X0,m ∈ A and n ∈ N. Taking n → ∞, we get D = D′. The proof of
the theorem is complete.

□

In the following theorem, we prove the hyperstability of the equation (14) in
the Banach spaces.

Theorem 2.2. Let X be a quasi-normed space and Y be a quasi-Banach space,
and ε be as in the above Theorem 2.1. Suppose that there exists a non empty set
A ∈ l(X ) such that a o b = b o a for all a, b ∈ A and inf

m∈A
εθ(m′u,mu) = 0

sup
m∈A

αm < 1.
(29)

u ∈ X0, then every g : X → Y satisfying (16) is a solution of (14) on X0.

Proof. Suppose that g : X → Y is a mapping which is satisfies (16). Then,
by the Theorem 2.1, there exists a mapping D : X → Y , which satisfies (14)
and ||g(u) −D(u)||θ ≤ ε∗(u) for all u ∈ X0. Since, from (29), ε∗(u) = 0 for all
u ∈ X0. This implies that g(u) = D(u) for all u ∈ X0, where

g(u+ v) + g(u− v) = 2g(u) + g(v) + g(−v),

for all u, v ∈ X0. Which satisfies the functional equation (14) on X0. □

From Theorems 2.1 and 2.2, we can obtain the following corollaries as natural
results.

Corollary 2.3. Let X be a quasi-normed space, and Y be a quasi-Banach
space. Assume that p < 0, q < 0 and φ is a positive number. If g : X → Y
satisfies

∥ g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v) ∥θ

≤ φθ (∥ u ∥p + ∥ u ∥q)θ ,
(30)

for all u, v ∈ X0, then g is a solution of the functional equation (14) on X0.

Proof. The proof follows from the above Theorem 2.2 by taking εθ(u, v) = φθ

(∥ u ∥p + ∥ v ∥q)θ for all u, v ∈ X0 with some real numbers φ ⩾ 0, p < 0 and
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q < 0. For each j ∈ N, define mj : X0 → X0 by mjx := mj(x) = −ju and
m′

j :X0 → X0 by m′
ju := m′

j(u) = (1 + j)u. Then

εθ(mju,mkv) = εθ(−ju,−kv)

= [φ (∥ −ju ∥p + ∥ −kv ∥q)]θ

= [φjp ∥ u ∥p +φkq ∥ v ∥q]θ

≤ [(jp + kq)φ(∥ u ∥p + ∥ v ∥q)]θ

= (jp + kq)θεθ(u, v),

for all u, v ∈ X0 and k, j ∈ N. Hence

lim
j→∞

εθ(m′
ju,mjv) ≤ lim

j→∞
((1 + j)p + jq))

θ
εθ(u, v) = 0,

for all u, v ∈ X0 and k, j ∈ N. Then (29) is valid with λ(mj) = jp+ jq for j ∈ N,
and there exists n0 ∈ N such that j ≥ n0 and

αmj
= 2 ((1 + j)p + (1 + j)q) + 2(jp + jq) + (1 + 2j)p + (1 + 2j)q < 1.

Therefore we can say that (17) is satisfied with A := {mj ∈ Aut(X ) : j ∈ Nn0}.
Hence, by the Theorem 2.2, every g : X → Y satisfying (30) is a solution of
the functional equation (14) on X0. □

Now, we extend the main result of Piszczek et al. [27] (Theorem 2) in the
framework of quasi-Banach space.

Corollary 2.4. Let X be a quasi-normed space and Y be a quasi-Banach space.
Assume that p < 0 and φ is a positive number. If g : X → Y satisfies

∥ g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v) ∥θ

≤ φθ (∥ u ∥p + ∥ v ∥p)θ ,
(31)

for all u, v ∈ X0, then g is a solution of the functional equation (14) on X0.

Proof. It is easily seen that the function ε given by

εθ(u, v) = [φ (∥ u ∥p + ∥ v ∥p)]θ ,

for all u, v ∈ X0 satisfies (29), since

εθ(ju, kv) = [φ ∥ ju ∥p +φ ∥ kv ∥p]θ ≤ [φ(jp + kp) (∥ u ∥p + ∥ v ∥p)]θ

= (jp + kp)θεθ(u, v),

for all u, v ∈ X0, k, j ∈ N and kj ̸= 0. The remaining part of the proof is similar
to the Corollary 2.3. □

Remark 2.1. Piszczek et al. [27] obtained Corollary 2.4 in the setting of a
Banach space.
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If X is a quasi-normed space and g : X → Y satisfies (31) for u, v ∈ X0,
with p < 0, then by Theorem 2.2, we know that g satisfies the Drygas functional
equation on X0. It is easy to see that if g(0) = 0, then g satisfies the Drygas
functional equation on X . So we have the following corollary.

Corollary 2.5. Let X be a quasi-normed space, Y be a quasi-Banach space.
Assume that p < 0 and φ is a positive number. If g : X → Y satisfies g(0) = 0
and inequality

∥ g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v) ∥θ

≤ φθ (∥ u ∥p + ∥ v ∥p)θ ,
(32)

for all u, v ∈ X0, then g is a solution of the functional equation (14) on X .

Corollary 2.6. Let X be a quasi-normed space, Y be a quasi-Banach space.
Assume that p+ q < 0 and φ is a positive number. If g : X → Y satisfies

∥ g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v) ∥θ

≤ φθ (∥ u ∥p∥ v ∥q)θ ,
(33)

for all u, v ∈ X0, then g is a solution of the functional equation (14) on X0.

Proof. It is easily seen that the function ε given by

εθ(u, v) = (φ (∥ u ∥p∥ v ∥q))θ ,
for all u, v ∈ X0 satisfies (29), since

εθ(ju, kv) = φθ (∥ ju ∥p∥ kv ∥q)θ ≤ φθ(jpkq)θ (∥ u ∥p∥ v ∥q)θ

= (jpkq)θεθ(u, v),

for all u, v ∈ X0, k, j ∈ N and kj ̸= 0. On the similar lines of the Corollary 2.3,
we get the results. □

By an analogous conclusion, the function ε given by

εθ(u, v) = φθ (∥ u ∥p + ∥ v ∥q + ∥ u ∥p∥ v ∥q)θ ,
for all u, v ∈ X0 satisfies (29), since

εθ(ju, kv) = φθ (∥ ju ∥p + ∥ kv ∥q + ∥ ju ∥p∥ kv ∥q)θ

= φθ (jp ∥ u ∥p +kq ∥ v ∥q +jpkq ∥ u ∥p∥ v ∥q)θ

≤ (jp + kq + jpkq)
θ
εθ(u, v),

for all u, v ∈ X0, k, j ∈ N and kj ̸= 0. So we have the following corollary.

Corollary 2.7. Let X be a complex quasi-normed space, Y be a quasi-Banach
space. Assume that p < 0, q < 0, p + q < 0 and φ is a positive number. If
g : X → Y satisfies

∥ g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v) ∥θ

≤ φθ (∥ u ∥p + ∥ v ∥q + ∥ u ∥p∥ v ∥q)θ ,
(34)
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for all u, v ∈ X0, then g is a solution of the functional equation (14) on X0.

The following result corresponds to the results on the non-homogeneous Dry-
gas functional equation (35).

Corollary 2.8. Let X be a quasi-normed space, Y be a quasi-Banach space,
ε as in Theorem 2.1 and H : X 2 → Y . Suppose that ∥ H(u, v) ∥θ≤ εθ(u, v)
for all u, v ∈ X0, where H(u0, v0) ̸= 0 for some u0, v0 ∈ X0 and there ex-
ists a nonempty A ∈ l(X ) such that (18) and (29) satisfies. Then the non-
homogeneous equation

g(u+ v) + g(u− v) = 2g(u) + 2g(v) + g(−v) +H(u, v), (35)

for all u, v ∈ X0, has no solution in the class of functions g : X → Y .

Proof. Let us assume the g : X → Y is a solution to (35). Then

∥ g(u+ v) + g(u− v)− 2g(u)− 2g(v)− g(−v) ∥θ

=∥ 2g(u) + g(v) + g(−v) +H(u, v)− 2g(u)− g(v)− g(−v) ∥θ

=∥ H(u, v) ∥θ

≤ εθ(u, v),

for all u, v ∈ X0. Consequently, by Theorem 2.2, g is a solution of (14). There-
fore, we have

H(u0, v0) = g(u0 + v0) + g(u0 − v0)− 2g(u0) + g(v0)− g(−v0) = 0,

which is contradiction. Hence non-homogeneous equation (35) has no solution
in the class of functions g : X → Y . □

The following example shows that the assumption in the above Corollary is
essential.

Example 2.9. Let X = Y = L
1
2 [0, 1] and ∥ u ∥X =∥ u ∥Y =

(∫ 1

0
| u(t) | 12 dt

)2
for all u ∈ X , where
L

1
2 [0, 1] = {g : [0, 1] → R : | g | 12 is Lebesgue integrable} and g(x) = u4 + u2

for all u ∈ X , ε(u, v) =
(∫ 1

0

(
2
√
3 | u(t)v(t) |

)
dt
)2

for all u, v ∈ X such that

u+ v, u− v ̸= 0.

||g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v)]|| ≤ ε(u, v) (36)

but g does not satisfy the functional equation (14).
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Proof. Note that X and Y are quasi-Banach spaces

||g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v)]||

=

(∫ 1

0

(
(u(t) + v(t))4 + (u(t) + v(t))2 + (u(t)− v(t))

4

+ (u(t)− v(t))
2 − 2u4(t)− 2u2(t)− v4(t)− v2(t)

− v4(t)− v2(t)
) 1

2 dt

)2

=

(∫ 1

0

(
u4(t) + 4v3(t)u(t) + 6u2(t)v2(t) + 4v3(t)u(t) + v4(t)

+ u2(t) + v2(t) + 2u(t)v(t) + u4(t)− 4u3(t)v(t) + 6u2(t)v2(t)

− 4u(t)v3(t) + v4(t) + u2(t) + v2(t)− 2u(t)v(t)− 2u4(t)

− 2u2(t)− v4(t)− v2(t)− v4(t)− v2(t)
) 1

2 dt

)2

=

(∫ 1

0

(
12u2(t)v2(t)

) 1
2 dt

)2

=

(∫ 1

0

(
2
√
3 | u(t)v(t) |

)
dt

)2

= ε(u, v).

This proves that (36) holds, but g does not satisfy the functional equation (14).
□

Example 2.10. Let X = [−1, 1]\{0} and let g : X → R be defined as g(u) =|
u |, u ∈ X . Then for all u, v ∈ X such that u + v, u = v ̸= 0, ϕ be a positive
number and

∥g(u+ v) + g(u− v)− 2g(u)− g(v)− g(−v)∥θ ≤ (ϕ(∥u∥p + ∥v∥p)θ

with p < 0, but g does not satisfy the functional equation (14) on X .

Example 2.11. Let X = R\[−1, 1] and let g : X → R be defined as g(u) = C,
for all u ∈ X , for some C > 0. Then for all u, v ∈ X such that u+ v, u− v ̸= 0,
ϕ be a positive number and

∥g(u+ v) + g(u− v)− 2g(u))− g(v)− g(−v)∥θ ≤ (ϕ(∥u∥p + ∥v∥p))θ

with p ≥ 0, but g does not satisfy the functional equation (14) on X .

Remark 2.2. If X is a normed space and Y is a Banach space and K = 1 in
Theorem 2.1, we obtain the corresponding results of Sirouni et al. [32].

Question. Prove or disprove the conclusion of Theorem 2.1 in the case Y is
a normed space.
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