과제정보
The first author acknowledge with thanks the bursary and financial support from Department of Science and Technology and National Research Foundation, Republic of South Africa, Centre of Excellence in Mathematical and Statistical Sciences (DST-NRF COE-MaSS) Doctoral Bursary. Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS.
참고문헌
- H.A. Abass, C. Izuchukwu, O.T. Mewomo and Q.L. Dong, Strong convergence of an inertial forward-backward splitting method for accretive operators in real Banach spaces, Fixed Point Theory, 21(2) (2020), 397-412. https://doi.org/10.24193/fpt-ro.2020.2.28
- H.A. Abass, A.A. Mebawondu, O.K. Narain and J.K. Kim, Outer approximation method for zeros of sum of monotone operators and fixed point problems in Banach spaces, Nonlinear Funct. Anal. Appl., 26(3) (2021), 451-474.
- H.A. Abass, G.C. Ugwunnadi, O.K. Narain and V. Darvish, Inertial Extragradient Method for Solving Variational Inequality and Fixed Point Problems of a Bregman Demigeneralized Mapping in a Reflexive Banach Spaces, Numer. Funct. Anal. Optim., 42(8)(2022), 933-960. https://doi.org/10.1080/01630563.2022.2069813
- R.P. Agarwal, D. ORegan and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topological Fixed Point Theory and Its Applications, 6, Springer, New York (2009).
- F. Akutsah, O.K. Narain, H.A. Abass and A.A. Mebawondu, Shrinking approximation method for solution of split monotone variational inclusion and fixed point problems in Banach spaces, Int. J. Nonlinear Anal. Appl., 12(2) (2021), 825-842.
- W. Ali, A. Turab and J.J. Nieto, On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph, J. Ineq. Appl., 5(19) (2022), https://doi.org/10.1186/s13660-021-02742-4.
- F. Alvarez and H. Attouch, An Inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11. https://doi.org/10.1023/A:1011253113155
- H.H. Bauschke and J.M. Borwein, Legendre functions and method of random Bregman functions, J. Convex Anal., 4 (1997), 27-67.
- H.H. Bauschke, J.M. Borwein and P.L. Combettes, Essentially smoothness, essentially strict convexity and Legendre functions in Banach spaces, Commun. Contemp. Math., 3 (2001), 615-647. https://doi.org/10.1142/S0219199701000524
- L.M. Bregman, The relaxation method for finding the common point of convex sets and its application to solution of problems in convex programming, U.S.S.R Comput. Math. Phys., 7 (1967), 200-217. https://doi.org/10.1016/0041-5553(67)90040-7
- D. Butnariu and A.N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Kluwer Academic Publishers, Dordrecht, 2000.
- D. Butnairu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 1-39, Art. ID 84919.
- G. Cacciapaglia and F. Sannino, Evidence for complex fixed points in pandemic data, Front. Appl. Math. Stat., 7 (2021), https://doi.org/10.3389/fams.2021.659580.
- G. Cai, Q.L. Dong and Y. Peng, Strong convergence theorems for inertial Tseng's extragradient method for solving variational inequality and fixed point problems, Optim. Lett., 15 (2021), 1457-1474. https://doi.org/10.1007/s11590-020-01654-4
- G.H. Chen and R.T. Rockafellar,Convergence rates in forward-backward splitting, SIAM J. Optim., 7 (1997), 421444.
- P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 11681200.
- C. Izuchukwu, G.N. Ogwo, A.A. Mebawondu and O.T. Mewomo, On finite family of monotone variational inclusion problems in reflexive Banach spaces, U. P. B. Sci. Bull. series A, 82(2) (2020).
- G. Kassay, S. Riech and S. Sabach, Iterative methods for solving systems of variational inequalities in Reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485.
- G.M. Korpelevich, The extragradient method for finding for finding saddle points and other problems, Ekonomikai Matematicheskie Melody, 12 (1976), 747-756.
- G. Lopez, V. Martin-Marquez, F. Wang and H.K. Xu, Forward-Backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., (2012), Article ID 109236.
- P.E. Mainge, Viscosity approximation process for quasi nonexpansive mappings in Hilbert space, Comput. Math. Appl., 59 (2010), 74-79. https://doi.org/10.1016/j.camwa.2009.09.003
- F.U. Ogbuisi and C. Izuchukwu, Approximating a zero of sum of two monotone operators which solves a fixed point problem in reflexive Banach spaces, Numer. Funct. Anal. Optim., 41(3) (2020), 322-343. https://doi.org/10.1080/01630563.2019.1628050
- C.C. Okeke and C. Izuchukwu, Strong convergence theorem for split feasibility problems and variational inclusion problems in real Banach spaces, Rendiconti del circolo Matematica di Palermo series 2, 70(1) (2021), 457-480. https://doi.org/10.1007/s12215-020-00508-3
- S.K. Panda, A. Atangana and J.J. Nieto, New insights on novel coronavirus 2019- nCoV/SARS-CoV-2 modelling in the aspect of fractional derivatives and fixed points, Math. Biosci. Eng., 18(6) (2021), 8683-8726. https://doi.org/10.3934/mbe.2021430
- B.T. Polyak, Some methods of speeding up the convergence of iterates methods, U.S.S.R Comput. Math. Phys., 4 (5) (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
- S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485.
- S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (2010), 24-44. https://doi.org/10.1080/01630560903499852
- S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Theory Methods Appl., Ser. A, 73 (2010), 122135.
- Y. Tang, R. Promkam, P. Cholamjiak and P. Sunthrayuth, Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces, Appl. Math., 67 (2022), 129-152. https://doi.org/10.21136/AM.2021.0108-20
- P. Tianchai, The zeros of monotone operators for the variational inclusion problem in Hilbert spaces, J. Ineq. Appl., 2021 (2021), https://doi.org/10.1186/s13660-021-02663-2.
- S. Timnak, E. Naraghirad and N. Hussain, Strong convergence of Halpern iteration for products of finitely many resolvents of maximal monotone operators in Banach spaces, Filomat, 31(15) (2017), 4673-4693. https://doi.org/10.2298/FIL1715673T
- H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(1) (2002), 240-256. https://doi.org/10.1112/S0024610702003332
- L. Wei and L. Duan, A new iterative algorithm for the sum of two different types of finitely many accretive operators in Banach space and its connection with capillarity equation, Fixed Point Theory Appl., 2015 (2015), https://doi.org/10.1186/s13663-015-0269-6.
- J. Yang and H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algo., 80 (2019), 741-752. https://doi.org/10.1007/s11075-018-0504-4
- C. Zalinescu, Convex Analysis in General Vector spaces, World Scientific Publishing Co. Inc., River Edge NJ, 2002.
- C. Zhang and Y. Wang, Proximal algorithm for solving monotone variational inclusion, Optimization, 67(8) (2018), 1197-1209. https://doi.org/10.1080/02331934.2018.1455832