References
- D.S. Hochbaum, B. Fishbain, Nuclear threat detection with mobile distributed sensor networks, Ann. Oper. Res. 187 (2011) 45-63, https://doi.org/10.1007/s10479-009-0643-z.
- R. Vilim, R.T. Klann, RadTarc: a system for detecting, localizing, and tracking radioactive sources in real time, Nucl. Technol. 168 (2009) 61-73, https://doi.org/10.13182/NT168-61.
- P. Kump, E.W. Bai, K.S. Chan, W. Eichinger, Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL, Radiat. Meas. 48 (2013) 18-28, https://doi.org/10.1016/j.radmeas.2012.11.002.
- D. Connor, P.G. Martin, T.B. Scott, Airborne radiation mapping: overview and application of current and future aerial systems, Int. J. Remote Sens. 37 (2016) 5953-5987, https://doi.org/10.1080/01431161.2016.1252474.
- I. Tsitsimpelis, C.J. Taylor, B. Lennox, M.J. Joyce, A review of ground-based robotic systems for the characterization of nuclear environments, Prog. Nucl. Energy 111 (2019) 109-124, https://doi.org/10.1016/j.pnucene.2018.10.023.
- N.S.V. Rao, S. Sen, N.J. Prins, D.A. Cooper, R.J. Ledoux, J.B. Costales, K. Kamieniecki, S.E. Korbly, J.K. Thompson, J. Batcheler, R.R. Brooks, C.Q. Wu, Network algorithms for detection of radiation sources, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 784 (2015) 326-331, https://doi.org/10.1016/j.nima.2015.01.037.
- E.W. Bai, K. Yosief, S. Dasgupta, R. Mudumbai, The maximum likelihood estimate for radiation source localization: initializing an iterative search, in: Proc. IEEE Conf. Decis. Control. 2015-Febru, 2014, pp. 277-282, https://doi.org/10.1109/CDC.2014.7039394.
- G. Cordone, R.R. Brooks, S. Sen, N.S.V. Rao, C.Q. Wu, M.L. Berry, K.M. Grieme, Improved multi-resolution method for MLE-based localization of radiation sources, in: 20th Int. Conf. Inf. Fusion, Fusion 2017 - Proc, 2017, https://doi.org/10.23919/ICIF.2017.8009626.
- M.R. Morelande, B. Ristic, Radiological source detection and localisation using Bayesian techniques, IEEE Trans. Signal. Process. 57 (2009) 4220-4231, https://doi.org/10.1109/TSP.2009.2026618.
- R.B. Andersonl, M. Pryor, S. Landsberger, Mobile robotic radiation surveying using recursive Bayesian estimation, IEEE Int. Conf. Autom. Sci. Eng. 2019-Augus (2019) 1187-1192, https://doi.org/10.1109/COASE.2019.8843064.
- P. Tandon, P. Huggins, R. Maclachlan, A. Dubrawski, K. Nelson, S. Labov, Detection of radioactive sources in urban scenes using Bayesian Aggregation of data from mobile spectrometers, Inf. Syst. 57 (2016) 195-206, https://doi.org/10.1016/j.is.2015.10.006.
- T. Lazna, P. Gabrlik, T. Jilek, L. Zalud, Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots, Int. J. Adv. Robot. Syst. 15 (2018) 1-16, https://doi.org/10.1177/1729881417750787.
- M. Hutchinson, H. Oh, W.H. Chen, Adaptive Bayesian sensor motion planning for Hazardous source term reconstruction, IFAC-PapersOnLine. 50 (2017) 2812-2817, https://doi.org/10.1016/j.ifacol.2017.08.632.
- R.A. Cortez, X. Papageorgiou, H.G. Tanner, A.V. Klimenko, K.N. Borozdin, W.C. Priedhorsky, Experimental implementation of robotic sequential nuclear search, 2007 Mediterr, Conf. Control. Autom. MED. (2007), https://doi.org/10.1109/MED.2007.4433797.
- M.K. Sharma, A.B. Alajo, H.K. Lee, Three-dimensional localization of low activity gamma-ray sources in real-time scenarios, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 813 (2016) 132-138, https://doi.org/10.1016/j.nima.2016.01.001.
- R.S. Sutton, A.G. Barto, Reinforcement Learning: an Introduction, MIT press, 2018.
- D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016) 484-489, https://doi.org/10.1038/nature16961.
- Z. Liu, S. Abbaszadeh, Double Q-Learning for radiation source detection, Sensors (Switzerland) 19 (2019), https://doi.org/10.3390/s19040960.
- G.R. Romanchek, S. Abbaszadeh, Stopping criteria for ending autonomous, single detector radiological source searches, PLoS One 16 (2021) 1-15, https://doi.org/10.1371/journal.pone.0253211.
- P. Proctor, C. Teuscher, A. Hecht, M. Osinski, Proximal policy optimization for radiation source search, J. Nucl. Eng. 2 (2021) 368-397, https://doi.org/10.3390/jne2040029.
- J. Berkson, Do radioactive decay events follow a random Poisson-Exponential? Int. J. Appl. Radiat. Isot. 26 (1975) 543-549. https://doi.org/10.1016/0020-708X(75)90093-9
- G.E. Monahan, State of the artda survey of partially observable Markov decision processes: theory, models, and algorithms, Manage. Sci. 28 (1982) 1-16. https://doi.org/10.1287/mnsc.28.1.1
- P. Cunningham, M. Cord, S.J. Delany, Supervised learning, in: Mach. Learn. Tech. Multimed., Springer, 2008, pp. 21-49.
- Y. Yu, X. Si, C. Hu, J. Zhang, A review of recurrent neural networks: LSTM cells and network architectures, Neural Comput. 31 (2019) 1235-1270. https://doi.org/10.1162/neco_a_01199
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy Optimization Algorithms, 2017, pp. 1-12. http://arxiv.org/abs/1707.06347.
- V. Konda, J. Tsitsiklis, Actor-critic algorithms, in: S. Solla, T. Leen, K. Muller (Eds.), Adv. Neural Inf. Process. Syst., MIT Press, 1999, in: https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.
- S. Amari, Backpropagation and stochastic gradient descent method, Neurocomputing 5 (1993) 185-196. https://doi.org/10.1016/0925-2312(93)90006-O
- N. Heess, T.B. Dhruva, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S.M. Ali Eslami, M. Riedmiller, D. Silver, Emergence of Locomotion Behaviours in Rich Environments, ArXiv, 2017.