과제정보
This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea (No.50445-2021 and No.50535-2021).
참고문헌
- International Commission on Radiation Unit and Measurements, (ICRU), Method for initial-phase Assessment of individual doses following acute exposure to ionizing radiation, ICRU 94 (2019).
- G.A. Alexander, et al., BiodosEPR-2006 Meeting: acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents, Radiat. Meas. 42 (2007) 972-996, https://doi.org/10.1016/j.radmeas.2007.05.035.
- L. Waldner, et al., The 2019-2020 EURADOS WG10 and RENEB field test of retrospective dosimetry methods in a small-scale incident involving ionizing radiation, Radiat. Res. 195 (2021) 253-264, https://doi.org/10.1667/RADE-20-00243.
- F. Trompier, C. Bassinet, A. Wieser, C.D. De Angelis, D. Viscomi, P. Fattibene, Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry, Ann. Ist. Super Sanita 45 (2009) 287-296.
- M. Sans Merce, et al., Extremity exposure in nuclear medicine: preliminary results of a European study, Radiat. Protect. Dosim. 144 (2011) 515-520, https://doi.org/10.1093/rpd/ncq574.
- S. Papierz, Z. Kaminski, M. Adamowicz, M. Zmyslony, Assessment of individual dose equivalents Hp(0.07) of medical staff occupationally exposed to ionizing radiation in 2012, Med. Pr. 65 (2014) 167-171, https://doi.org/10.13075/mp.5893.2014.013.
- D. Adliene, B. Griciene, K. Skovorodko, J. Laurikaitiene, J. Puiso, Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers, Environ. Res. 183 (2020), 109144, https://doi.org/10.1016/j.envres.2020.109144.
- F. Trompier, F. Queinnec, E. Bey, T. De Revel, J.J. Lataillade, I. Clairand, M. Benderitter, J.F. Bottollier-Depois, EPR retrospective dosimetry with fingernails: report on first application cases, Health Phys. 106 (2014) 798-805, https://doi.org/10.1097/HP.0000000000000110.
- A. Romanyukha, F. Trompier, R.A. Reyes, D.M. Christensen, C.J. Iddins, S.L. Sugarman, Electron paramagnetic resonance radiation dose assessment in fingernails of the victim exposed to high dose as result of an accident, Radiat. Environ. Biophys. 53 (2014) 755-762, https://doi.org/10.1007/s00411-014-0553-6.
- F. Trompier, A. Romanyukha, R. Reyes, H. Vezin, F. Queinnec, D. Gourier, State of the art in nail dosimetry: free radicals identification and reaction mechanisms, Radiat. Environ. Biophys. 53 (2014) 291-303, https://doi.org/10.1007/s00411-014-0512-2.
- A. Marciniak, B. Ciesielski, M. Juniewicz, A. Prawdzik-Dampc, M. Sawczak, The effect of sunlight and UV lamps on EPR signal in nails, Radiat. Environ. Biophys. 58 (2019) 287-293, https://doi.org/10.1007/s00411-019-00777-2.
- X. He, et al., Development and validation of an ex vivo electron paramagnetic resonance fingernail biodosimetric method, Radiat. Protect. Dosim. 159 (2014) 172-181, https://doi.org/10.1093/rpd/ncu129.
- C.A.B. Gonzales, J.E. Tano, H. Yasuda, An attempt to reduce the background free radicals in fingernails for monitoring accidental hand exposure of medical workers, Appl. Sci. 10 (2020) 1-12, https://doi.org/10.3390/app10248949.
- M.C.R. Symons, H. Chandra, J.L. Wyatt, Electron paramagnetic resonance spectra of irradiated finger-nails: a possible measure of accidental exposure, Radiat. Protect. Dosim. 1 (1995) 11-15, https://doi.org/10.1093/oxfordjournals.rpd.a082591.
- G. Strzelczak, M. Sterniczuk, J. Sadlo, M. Kowalska, J. Michalik, EPR study of γ-irradiated feather keratin and human fingernails concerning retrospective dose assessment, Nukleonika 58 (2013) 505-509.
- S. Hirota, C.A.B. Gonzales, H. Yasuda, Behavior of the electron spin resonance signals in X-ray irradiated human fingernails for the establishment of a dose reconstruction procedure, J. Radiat. Res. 62 (2021) 812-824, https://doi.org/10.1093/jrr/rrab027.
- A. Romanyukha, F. Trompier, R.A. Reyes, M.A. Melanson, EPR measurements of fingernails in Q-band, Radiat. Meas. 46 (2011) 888-892, https://doi.org/10.1016/j.radmeas.2011.04.004.
- F. Trompier, L. Kornak, C. Calas, A. Romanyukha, B. Leblanc, C.A. Mitchell, H.M. Swartz, I. Clairand, Protocol for emergency EPR dosimetry in fingernails, Radiat. Meas. 42 (2007) 1085-1088, https://doi.org/10.1016/j.radmeas.2007.05.024.
- J.S. Kim, et al., Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity, Nucl. Eng. Technol. 54 (2) (2021) 479-485, https://doi.org/10.1016/j.net.2021.08.016.
- H. Choi, S.A. Choi, B. Lee, Preliminary study of water contents and signal behavior in fingernail/EPR dosimetry, J. Radiation Protect. Res. 38 (2013) 185-188, https://doi.org/10.14407/jrp.2013.38.4.185.
- R.A. Reyes, A. Romanyukha, C. Olsen, F. Trompier, L.A. Benevides, Electron paramagnetic resonance in irradiated fingernails: variability of dose dependence and possibilities of initial dose assessment, Radiat. Environ. Biophys. 48 (2009) 295-310, https://doi.org/10.1007/s00411-009-0232-1.
- S. Hirota, C.A.B. Gonzales, H. Yasuda, I. Yamaguchi, S. Toyoda, Electron spin resonance signal of human nails: increase after irradiation, J. Radioanal. Nucl. Chem. 328 (2021) 1369-1373, https://doi.org/10.1007/s10967-020-07540-8.
- International Organization for Standardization (ISO), Radiological Protection-Minimum Criteria for Electron Paramagnetic Resonance (EPR) Spectroscopy for Retrospective Dosimetry of Ionizing Radiation-Part 2: Ex Vivo Human Tooth Enamel Dosimetry, ISO 13304 2, 2020.
- P. Fattibene, et al., The 4th international comparison on EPR dosimetry with tooth enamel Part 1: Report, Radiat. Meas. 46 (2011) 765-771, https://doi.org/10.1016/j.radmeas.2011.05.001.
- E. Bernal, Limit of detection and limit of quantification determination in gas chromatography, Adv. Gas Chromato. (2014).
- A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chronicles Young Sci. 2 (2011) 21-25, https://doi.org/10.4103/2229-5186.79345.
- M. Nenoi (Ed.), Current Topics in Ionizing Radiation Research, IntechOpen, 2012, https://doi.org/10.5772/2027.
- International Commission on Radiological Protection (ICRP), Adult mesh-type reference computational phantoms, ICRP 145, 2020.
- B.R. Park, et al., The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea, Nucl. Eng. Technol. 52 (2020) 2379-2386, https://doi.org/10.1016/j.net.2020.03.025.
- F. Trompier, A. Romanyukha, L. Kornak, C. Calas, B. LeBlanc, C. Mitchell, H. Swartz, I. Clairand, Electron paramagnetic resonance radiation dosimetry in fingernails, Radiat. Meas. 44 (2009) 6-10, https://doi.org/10.1016/j.radmeas.2008.10.005.
- A. Marciniak, B. Ciesielski, A. Prawdzik-Dampc, The effect of dose and water treatment on EPR signals in irradiated fingernails, Radiat. Protect. Dosim. 162 (2014) 6-9, https://doi.org/10.1093/rpd/ncu207.
- S. Sholom, S.W.S. McKeever, Emergency EPR dosimetry technique using vacuum-stored dry nails, Radiat. Meas. 88 (2016) 41-47, https://doi.org/10.1016/j.radmeas.2016.02.014.
- M. Sueki, G.A. Rinard, S.S. Eaton, G.R. Eaton, Impact of high-dielectric-loss materials on the microwave field in EPR experiments, J. Magn. Reson. A. 118 (1996) 173-188, https://doi.org/10.1006/jmra.1996.0025.
- International Organization for Standardization (ISO), Practice for Calibration of Routine Dosimetry Systems for Radiation Processing, 2013. ISO/ASTM51261.
- International Atomic Energy Agency (IAEA), Use of Electron Paramagnetic Resonance Dosimetry with Tooth Enamel for Retrospective Dose Assessment, vol. 1331, IAEA-TECDOC, 2002.