DOI QR코드

DOI QR Code

A comparative study on the mechanical properties of ultra early strength steel fiber concrete

  • Yi-Chun Lai (Department of Civil Engineering, Military Academy) ;
  • Ming-Hui Lee (Department of Civil Engineering, National Pingtung University of Science and Technology) ;
  • Yuh-Shiou Tai (HiPer Fiber LLC)
  • Received : 2023.06.29
  • Accepted : 2024.05.10
  • Published : 2023.11.25

Abstract

The production of ultra-early-strength concrete (UESC) traditionally involves complexity or necessitates high-temperature curing conditions. However, this study aimed to achieve ultra-early-strength performance solely through room-temperature curing. Experimental results demonstrate that under room-temperature (28℃) curing conditions, the concrete attained compressive strengths of 20 MPa at 4 hours and 69.6 MPa at 24 hours. Additionally, it exhibited a flexural strength of 7.5 MPa after 24 hours. In contrast, conventional concrete typically reaches around 20.6 MPa (3,000 psi) after approximately 28 days, highlighting the rapid strength development of the UESC. This swift attainment of compressive strength represents a significant advancement for engineering purposes. Small amounts of steel fibers (0.5% and 1% by volume, respectively) were added to address potential concrete cracking due to early hydration heat and enhance mechanical properties. This allowed observation of the effects of different volume contents on ultra-early-strength fiber-reinforced concrete (UESFRC). Furthermore, the compressive strength of 0.5% and 1% UESFRC increased by 16.3% and 31.3%, respectively, while the flexural strength increased by 37.1% and 47.9%. Moreover, toughness increased by 58.2 and 69.7 times, respectively. These findings offer an effective solution for future emergency applications in public works.

Keywords

Acknowledgement

This research was funded in part by the MOH AND ASSOCIATES (MAA), Inc. The authors acknowledge the MAA for its financial support and the comments and suggestions made by its staff and project manager. Meanwhile, we would also like to thank CHING-TAI RESINS CHEMICAL CO. for the technical guidance and the chemicals provided. The opinions expressed in this paper are those of the writers and do not necessarily reflect the sponsor's views.

References

  1. Abbas, S., Soliman, A.M. and Nehdi, M.L. (2015), "Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages", Constr. Build. Mater., 75, 429-441. https://doi.org/10.1016/j.conbuildmat.2014.11.017 
  2. Abd Elaty, M.A.A. (2014), "Compressive strength prediction of Portland cement concrete with age using a new model", HBRC j., 10(2), 145-155. https://doi.org/10.1016/j.hbrcj.2013.09.005 
  3. ACI 330R-08 (2008), Guide for the Design and Construction of Concrete Parking Lots; American Concrete Institute, Farmington Hills, MI, USA. 
  4. Altun, F., Haktanir, T. and Ari, K. (2007), "Effects of steel fiber addition on mechanical properties of concrete and RC beams", Constr. Build. Mater., 21(3), 654-661. https://doi.org/10.1016/j.conbuildmat.2005.12.006 
  5. Ananyachandran, P. and Vasugi, V. (2022), "Development of a sustainable high early strength concrete incorporated with pozzolans, calcium nitrate and triethanolamine: An experimental study", Sustainable Energy Technologies and Assessments, 54, 102857. https://doi.org/10.1016/j.seta.2022.102857 
  6. Anderson, J. (2001), "4×4 Concrete", Caltrans & WSCACPA Concrete Pavement Conference. 
  7. ASTM C143/C143M-20 (2020), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, USA, pp. 1-2. 
  8. ASTM C1609/C1609M (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, USA, pp. 1-9. 
  9. ASTM C78/C78M (2021), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, USA, pp. 1-5. 
  10. Barros, J.A., Lourenco, L.A., Soltanzadeh, F. and Taheri, M. (2013), "Steel fibre reinforced concrete for elements failing in bending and in shear", Adv. Concrete Constr., Int. J., 1(1), 1-27. https://doi.org/10.12989/acc.2013.1.1.001 
  11. Bayasi, M.Z. and Soroushian, P. (1992), "Effect of steel fiber reinforcement on fresh mix properties of concrete", Mater. J., 89(4), 369-374. https://doi.org/10.14359/9751 
  12. Bhat, K.M.U.D. and Khan, M.Z. (2018), "Effect of Steel Fibre Reinforcement on Early Strength of Concrete", Int. J. Trend Sci. Res. Dev., 2, 198-225. https://doi.org/10.31142/ijtsrd15781 
  13. Bury, M.A. and Nmai, C. (2005), "Innovative admixture technology facilitates rapid repair of concrete pavements", In: 8th International Conference on Concrete Pavements American Association of State Highway and Transportation Officials (AASHTO) American Concrete Pavement Association Cement Association of Canada Colorado Department of Transportation Concrete Reinforcing Steel Institute Federal Highway Administration Portland Cement Association Purdue University Transportation Research Board, pp. 441-452. 
  14. Chore, H.S. and Joshi, M.P. (2021), "Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction", Adv. Concrete Constr., Int. J., 12(5), 419-427. https://doi.org/10.12989/acc.2021.12.5.419 
  15. Dai, L., Wang, L., Bian, H., Zhang, J., Zhang, X. and Ma, Y. (2019), "Flexural capacity prediction of corroded prestressed concrete beams incorporating bond degradation", J. Aerosp. Eng., 32(4), 04019027. https://doi.org/10.1007/s10973-017-6837-8 
  16. Engbert, A. and Plank, J. (2021), "Impact of sand and filler materials on the hydration behavior of calcium aluminate cement", J. Am. Ceramic Soc., 104(2), 1067-1075. https://doi.org/10.1111/jace.17505 
  17. Eskandarsefat, S. (2018), "Investigation on the effects of mix water temperature on High-Early strength cement concrete properties-An experimental work and a case study", J. Build. Eng., 20, 208-212. https://doi.org/10.1016/j.jobe.2018.07.023 
  18. FAA AC 150-5370-10H (2018), Standard Specifications for Construction of Airports; U.S. Department of Transportation.
  19. Flatt, R. and Schober, I. (2012), "Superplasticizers and the rheology of concrete", In: Understanding the rheology of concrete, pp. 144-208. https://doi.org/10.1533/9780857095282.2.144 
  20. Ghosh, D., Abd-Elssamd, A., Ma, Z.J. and Hun, D. (2021), "Development of high-early-strength fiber-reinforced self-compacting concrete", Constr. Build. Mater., 266, 121051. https://doi.org/10.1016/j.conbuildmat.2020.121051 
  21. Golaszewski, J., Cygan, G. and Golaszewska, M. (2019), "Development and optimization of high early strength concrete mix design", In: IOP Conference Series: Materials Science and Engineering, 471(11), 112026. https://doi.org/10.1088/1757-899X/471/11/112026 
  22. Haach, V.G., Juliani, L.M. and Da Roz, M.R. (2015), "Ultrasonic evaluation of mechanical properties of concretes produced with high early strength cement", Constr. Build. Mater., 96, 1-10. https://doi.org/10.1016/j.conbuildmat.2015.07.139 
  23. Haido, J.H., Abdul-Razzak, A.A., Al-Tayeb, M.M., Bakar, B.H., Yousif, S.T. and Tayeh, B.A. (2021), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., Int. J., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089 
  24. Johnston, C.D. (1992), "Durability of high early strength silica fume concretes subjected to accelerated and normal curing", Special Publication, 132, 1167-1188. https://doi.org/10.14359/1222 
  25. Kaikea, A., Achoura, D., Duplan, F. and Rizzuti, L. (2014), "Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete", Mater. Des., 63, 493-499. https://doi.org/10.1016/j.matdes.2014.06.066 
  26. Kanchanason, V. and Plank, J. (2018), "Effectiveness of a calcium silicate hydrate-Polycarboxylate ether (CSH-PCE) nanocomposite on early strength development of fly ash cement", Constr. Build. Mater., 169, 20-27. https://doi.org/10.1016/j.conbuildmat.2018.01.053 
  27. Kim, Y., Hanif, A., Usman, M., Munir, M.J., Kazmi, S.M.S. and Kim, S. (2018), "Slag waste incorporation in high early strength concrete as cement replacement: Environmental impact and influence on hydration and durability attributes", J. Cleaner Production, 172, 3056-3065. https://doi.org/10.1016/j.jclepro.2017.11.105 
  28. Kontoni, D.P.N., Jahangiri, B., Dalvand, A. and Shokri-Rad, M. (2023), "Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels", Adv. Concrete Constr., Int. J., 15(1), 23-39. https://doi.org/10.12989/acc.2023.15.1.023 
  29. Kroviakov, S., Kryzhanovskyi, V. and Zavoloka, M. (2021), "Steel fibrous concrete with high-early strength for rigid pavements repair", IOP Conference Series: Materials Science and Engineering, 1162(1), 012008. https://doi.org/10.1088/1757-899X/1162/1/012008 
  30. Kumar, R., Samanta, A.K. and Roy, D.S. (2014), "Characterization and development of eco-friendly concrete using industrial waste-A Review", J. Urban Environ. Eng., 8(1), 98-108. https://www.jstor.org/stable/26203414  https://doi.org/10.4090/juee.2014.v8n1.098108
  31. Kumar, D.P., Amit, S. and Chand, M.S.R. (2021), "Influence of various nano-size materials on fresh and hardened state of fast setting high early strength concrete [FSHESC]: A state-of-the-art review", Constr. Build. Mater., 277(29), 122299. https://doi.org/10.1016/j.conbuildmat.2021.122299 
  32. Lee, T.Y. (2020), "4×4TM Concrete Very High-Early Strength Concrete Admixture", CHING-TAI RESINS CHEMICAL CO., LTD. 
  33. Li, M. and Li, V. (2011), "High-Early-Strength Engineered Cementitious Composites for Fast, Durable Concrete Repair-Material Properties", ACI Mater. J., 108(1), 3-12. https://doi.org/10.14359/51664210 
  34. Liu, Y., Jia, M., Song, C., Lu, S., Wang, H., Zhang, G. and Yang, Y. (2020), "Enhancing ultra-early strength of sulphoaluminate cement-based materials by incorporating graphene oxide", Nanotechnol. Rev., 9(1), 17-27. https://doi.org/10.1515/ntrev-2020-0002 
  35. Master Builders Solutions (2020), Master Builders Solutions Concrete Admixtures. https://www.master-builders-solutions.com/r-d/focus-oninnovation 
  36. Naaman, A.E. and Al-Khairi, F.M. (1996), "Bending Properties of High-Early-Strength Fiber Reinforced Concrete", Special Publication, 159, 351-374. https://doi.org/10.14359/1430 
  37. Nayaka, R., Diwakar, G.S. and Gudur, V. (2018), "Effect of steam curing on the properties of high early strength silica fume concrete", In: IOP Conference Series: Materials Science and Engineering, 431(4), 042011. https://doi.org/10.1088/1757-899X/431/4/042011 
  38. Nkinamubanzi, P-C., Mantellato, S. and Flatt, R.J. (2016), "Superplasticizers in practice", In: Science and Technology of Concrete Admixtures, pp. 353-377. https://doi.org/10.1016/B978-0-08-100693-1.00016-3 
  39. Pansuk, W., Nguyen, T.N., Sato, Y., Den Uijl, J.A. and Walraven, J.C. (2017), "Shear capacity of high performance fiber reinforced concrete I-beams", Constr. Build. Mater., 157, 182-193. https://doi.org/10.1016/j.conbuildmat.2017.09.057 
  40. Shaalan, H., Ismail, M.A.M. and Azit, R. (2016), "Time-dependent behavior of steel fiber reinforced shotcrete lining under rock overstressing using shotcrete model", Electron. J. Geotech. Eng. EJGE, 21(26), 10365-10378. https://web.archive.org/web/20180426060626id_/http://www.ejge.com/2016/Ppr2016.0807ma.pdf 
  41. Sunarno, Y., Rangan, P.R. and Tumpu, M. (2023), "Effect of Accelerators on High Early Strength Concrete (HESC) Using High Volume Fly Ash", In: IOP Conference Series: Earth and Environmental Science, 1272(1), 012025. https://doi.org/10.1088/1755-1315/1272/1/012025 
  42. Tang, C.W. (2021), "Mix design and early-age mechanical properties of ultra-high performance concrete", Adv. Concrete Constr., Int. J., 11(4), 335-345. https://doi.org/10.12989/acc.2021.11.4.335 
  43. UFC 3-260-01 (2019), Airfield and Heliport Planning and Design; Department of Defense, USA. 
  44. Wang, S. and Li, V.C. (2006), "High-early-strength engineered cementitious composites", ACI Mater. J., 103(2), 97. https://doi.org/10.14359/15260 
  45. Wang, S., Liu, B., Zhao, P., Lu, L. and Cheng, X. (2018), "Effect of early-strength-enhancing agents on setting time and early mechanical strength of belite-barium calcium sulfoaluminate cement", J. Thermal Anal. Calorim., 131, 2337-2343. https://doi.org/10.1007/s10973-017-6837-8 
  46. Wu, Z., Shi, C., Khayat, K.H. and Wan, S. (2016), "Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC)", Cement Concrete Compos., 70, 24-34. https://doi.org/10.1016/j.cemconcomp.2016.03.003 
  47. Wu, Y., Li, Q., Li, G., Tang, S., Niu, M. and Wu, Y. (2021), "Effect of naphthalene-based superplasticizer and polycarboxylic acid superplasticizer on the properties of sulfoaluminate cement", Materials, 14(3), 662. https://doi.org/10.3390/ma14030662 
  48. Xia, L., Zhou, M., Ni, T. and Liu, Z. (2020), "Synthesis and characterization of a novel early-strength polycarboxylate superplasticizer and its performances in cementitious system", J. Appl. Polym. Sci., 137(30), 48906. https://doi.org/10.1002/app.48906 
  49. Yasin, A.K., Bayuaji, R., and Susanto, T.E. (2017), "A review in high early strength concrete and local materials potential", IOP Conference Series: Materials Science and Engineering, 267(1), 012004. https://doi.org/10.1088/1757-899X/267/1/012004 
  50. Zuraida, A., Sopyan, I. and Zahurin, H. (2011), "Effect of fiber length variations on properties of coir fiber reinforced cement-albumen composite (CFRCC)", IIUM Engineering. J., 12(1), 65-77. https://doi.org/10.31436/iiumej.v12i1.116