DOI QR코드

DOI QR Code

Evaluation criteria for filling performance of high-flowing concrete using steel-concrete panel

  • Dong Kyu Lee (Department of Safety Engineering, Dongguk University-Gyeongju) ;
  • Jae Seon Kim (National Disaster Management Research Institute) ;
  • Myoung Sung Choi (Department of Civil and Environmental Engineering, Dankook University)
  • 투고 : 2023.08.22
  • 심사 : 2024.04.24
  • 발행 : 2023.11.25

초록

The purpose of this study was to evaluate the practical application of high-flowing concrete for a steel-concrete panel (SCP) module for a liquefied natural gas (LNG) storage tank. We evaluated the physical properties and filling performance of the developed concrete for the SCP module. First, slump tests were performed to evaluate the performance of the proposed standards for the filling tests. All the concrete mixes showed satisfactory performance. Based on the results of the previous study, the reliability of the required time measured using the T500 test and the rheometer results measured before and after pumping was 0.94, indicating that segregation and blocking should not occur. L-box and U-box tests were conducted before and after pumping. All the recommended standards showed satisfactory performance. The SCP structural module for LNG storage tanks was fabricated to a full scale to evaluate its practical application at the final site. Satisfactory filling performance was confirmed for all the specimens.

키워드

과제정보

This research is supported by the Korea Agency for Infra-structure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 22CFRP-C163381-02).

참고문헌

  1. ACI Committee 237 (2007), "Self-Consolidating Concrete."
  2. ASTM C 1621/ 1621M-09b (2009), "Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring."
  3. Choi, Y.W., Jung, J.G., Kim, K.H. and An, T.H. (2009), "The Bond Characteristics of Deformed Bars in High Flowing Self-Compacting Concrete", J. Korea Soc. Civil Engr., 29(5), 511-518. https://doi.org/10.12652/Ksce.2009.29.5A.511
  4. Choi, Y.W., Kim, K.H., Park, S.J. and Jung, J.G. (2010), "H High fluidity concrete", J. Korea Concrete Inst., 22(1), 45-47. https://doi.org/10.4334/JKCI.2015.27.1.045
  5. Chung, J.S., Shin, H.C. and Kim, J.G. (2016), "A Study on the Properties of Concrete Mixed with Pozzolan Inorganic Polymer(PIP) Waterproof Admixture", J. Korean Soc. Safety, 31(4), 82-89. https://doi.org/10.14346/JKOSOS.2016.31.4.82
  6. EFNARC (2002), "Specification and Guidelines for Self-Compacting Concrete", UK, 32.
  7. EFNARC (2005), "The European Guidelines for Self-Compacting Concrete."
  8. Elyamany, H.E., Abd Elmoaty, M. and Mohamed, B. (2014), "Effect of filler types on physical, mechanical and microstructure of self-compaction concrete and flowable concrete", J. Alexandria Eng., 53(2), 298-307. https://doi.org/10.1016/j.aej.2014.03.010
  9. Ferraris, C.F., Brower, L.E., Beaupre, D., Chapdelaine, F., Domone, P., Koehler, E., Shen, L., Sonebi, M., Struble, L., Tepke, D., Wallevik, O. and Wallevik, J.E. (2004), "Comparison of Concrete Rheometers: International Tests at MB, May, 2003", NISTIR 7154, National Institute of Standards and Technology.
  10. Han, C.G., Jiang, Y.R., Oh, S.K. and Bahn, H.Y. (1999), "Development and Property Analysis of Segregation-Reducing Type Flowing Concrete Using the Viscosity Agent", J. Korea Concrete Inst., 11(4), 95-105. https://doi.org/10.22636/JKCI.1999.11.4.95
  11. Hwan, Y.J., Hwan, C.T., Jo, H.S. and Hoon, K.G. (1996), "An Experimental Study on the Manufacturing and Application of High-Workable Concrete", J. Korea Concrete Inst., 8(2), 109-117.
  12. Hwang, S.Y., Lee, H.K. and Kang, B.H. (1998), "A Study on the Applicability of High-Workable Concrete in Field", J. Korea Architect. Inst., 14(7), 71-78.
  13. Hwang, S.D., Khayat, K.H. and Bonneau, O. (2006), "Performance-based specifications of self-consolidating concrete used in structural applications", ACI Mater. J., 103(2), 121-129.
  14. Jang, H.O. and Jee, N.Y. (2013), "An experimental study on the mixing of normal strength and high fluidity concrete using ground granulated blast furnace slag", J. Korea Architect. Inst., 29(6), 81-88. https://doi.org/10.5659/JAIK_SC.2013.29.6.81
  15. Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y. and Li, H. (2017), "Effect of constituents on rheological properties of fresh concrete-A review", J. Cement Concrete Compos., 83, 146-159. https://doi.org/10.1016/j.cemconcomp.2017.07.016
  16. JSCE (1998), "Recommendation for Construction of Self-Compacting Concrete", Technical Session: Recommendations and Materials. Japan Society of Civil Engineers, pp. 417-437.
  17. JSCE (1999), "Recommendation for Self-Compacted Concrete", Japan Society of Civil Engineers, Concrete Engineering Series, p. 31.
  18. Kamakshi, T.A., Reddy, K.C. and Subramaniam, K.V.L. (2022), "Studies on rheology and fresh state behavior of fly ash-slag geopolymer binders with silica", J. Mater., 55(2), p. 65. https://doi.org/10.1617/s11527-022-01908-w
  19. Khan, M.M.H., Sobuz, M.H.R., Meraz, M.M., Tam, V.W., Hasan, N.M.S. and Shaurdho, N.M.N. (2023), "Effect of various powder contention the properties of sustainable self-compaction concrete", Case Stud. Constr. Mater., 19, e02274. https://doi.org/10.1016/j.cscm.2023.e02274
  20. Kim, K.Y. and Choi, M.S. (2022), "Horizontal-vertical ratio for concrete pumping pipe", J. Case Stud. Constr. Mater., 16.
  21. Kim, M.H., Kamada, E. and Han, C.G. (1997), "An Experimental Study on the Manufacturing System and Development of High-Flowing Concrete", J. Korea Architect. Inst., 13(5), 279-288.
  22. Kim, E.G., Choi, J.J., Jeon, C.G. and Lee, H.S. (2002), "Development Trend and Present Situation of High-Performance Concrete In Japan", J. Korea Concrete Inst., 14(4), 66-71.
  23. Kim, S.W., Kim, S.W., Ahn, T.S. and Oh, B.H. (2008), "Development and Application of High Performance and Multi-Functional Concrete", J. Korea Concrete Inst., 20(1), 22-26.
  24. Koehler, E.P., Fowler, D.W., Ferraris, C.F. and Amziane, S. (2006), "A New, Portable Rheometer for Fresh Self-Consolidating Concrete", American Concrete Institute.
  25. Lee, D.K. and Choi, M.S. (2018), "Standard Reference Materials for Cement Paste, Part I: Suggestion of Constituent Materials Based on Rheological Analysis", J. Mater., 11, 624.
  26. Lee, D.K. and Choi, M.S. (2020), "Development of reference materials for cement paste", Adv. Concrete Constr., Int. J., 9(6), 547-556. https://doi.org/10.12989/acc.2020.9.6.547
  27. Lee, J.B., Kim, H.W. and Hak, C. (2006), "A study of the Technology Evaluation on the Modularization of SPC(Steel Plate Concrete) Structure", KSCE J. Civil Eng., 10, 2137-2140.
  28. Lee, G.C., Cho, B.Y. and Oh, D.U. (2012), "A study on rheological properties and rational fluidity evaluation of cementitious matrices for high strength concrete", J. Korea Architect. Inst., 28(1), 117-124. https://doi.org/10.5659/JAIK_SC.2012.28.1.117
  29. Lee, D.K., Lee, K.W. and Choi, M.S. (2018a), "Study on the Development of Standard Reference Materials for Safety Control of Construction Materials", J. Korean Soc. Safety, 32(5), 54-61. https://doi.org/10.14346/JKOSOS.2017.32.5.54
  30. Lee, D.K., Lee, K.W., Park, G.J., Kim, S.W., Park, J.J., Kim, Y.J. and Choi, M.S. (2018b), "Guideline for filling performance of concrete for modular LNG storage tanks", J. Korean Soc. Safety, 33(2), 86-93. https://doi.org/10.14346/JKOSOS.2018.33.2.86
  31. Lee, K.W., Lee, H.J. and Choi, M.S. (2022), "Evaluation of 3D concrete printing performance from a rheological perspective", Adv. Concrete Constr., Int. J., 8(2), 155-163. https://doi.org/10.12989/acc.2019.8.2.155
  32. Loukili, A., Ait-Mokhtar, S., Bennacer, S., Boukais, O. and Guessasma, S. (2017), "Effect of Concrete Pumping on Rheological Properties of Fresh Concrete", Materials, 10(4), 409.
  33. Okamura, H. and Ozawa, K. (1995), "Mix-design for self-compacting concrete", Concrete Library Japan Soc. Civil Engr., pp. 107-120.
  34. Park, G.J., Park, J.J., Kim, S.W. and Lee, D.G. (2017a), "A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent", J. Korea Academia-Indust. Cooperat. Soc., 18(2), 689-696.
  35. Park, G.J., Kim, S.W., Park, J.J. and Lee, D.G. (2017b), "Evaluation of Optimum Mix Proportion and Filling Performance of High-fluidity Concrete for SCP Module charging", J. Korea Academia-Indust. Cooperat. Soc., 18(3), 452-459.
  36. PCI (2004), "PCI Design Handbook: Precast and Pre-stressed Concrete", 6th ed., Precast/Pre-stressed Concrete Institute.
  37. Rashad, A.M. (2022), "Behavior of steel slag aggregate in mortar and concrete - A comprehensive overview", J. Build. Eng., 53(1), 104536. https://doi.org/10.1016/j.jobe.2022.104536
  38. RILEM (1999), "Self-Compacting Concrete", RILEM Publications S.A.R.L.
  39. Song, K.I., Shin, G.S., Gong, M.H. and Song, J.K. (2013), "Basic research of self compacting concrete using alkali-activated slag binder", J. Korea Concrete Inst., 25(6), 657-665. https://doi.org/10.4334/JKCI.2013.25.6.657
  40. Swedish (2013), "BFS 2013:9: Provningsmetoder for betong - Plastisk konsistens - Spridningsvidd. Stockholm", Swedish Civil Contingencies Agency.
  41. Zhang, D., Ding, S., Ma, Y. and Yang, Q. (2022), "Preparation and Properties of Foam Concrete Incorporating Fly Ash", J. Mater., 15(18), p. 6287. https://doi.org/10.3390/ma15186287