Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2019R1F1A1056904 and NRF-2022R1A2C1006958).
References
- Bach A, Calsamiglia S, Stern MD. Nitrogen metabolism in the rumen. J Dairy Sci 2005;88:E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
- Tan P, Liu H, Zhao J, et al. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci Total Environ 2021;800:149596. https://doi.org/10.1016/j.scitotenv.2021.149596
- Rychlik JL, Russell JB. Mathematical estimations of hyper-ammonia producing ruminal bacteria and evidence for bacterial antagonism that decreases ruminal ammonia production. FEMS Microbiol Ecol 2000;32:121-8. https://doi.org/10.1111/j.1574-6941.2000.tb00706.x
- Chen G, Russell JB. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl Environ Microbiol 1988;54:2742-9. https://doi.org/10.1128/aem.54.11.2742-2749.1988
- Chen G, Russell JB. More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol 1989;55:1052-7. https://doi.org/10.1128/aem.55.5.1052-1057.1989
- Houlihan AJ, Russell JB. The susceptibility of ionophore-resistant Clostridium aminophilum F to other antibiotics. J Antimicrob Chemother 2003;52:623-8. https://doi.org/10.1093/jac/dkg398
- Flythe MD, Andries K. The effects of monensin on amino acid catabolizing bacteria isolated from the Boer goat rumen. Small Rumin Res 2009;81:178-81. https://doi.org/10.1016/j.smallrumres.2008.12.004
- Wang ZB, Xin HS, Wang MJ, et al. Effects of dietary supplementation with hainanmycin on protein degradation and populations of ammonia-producing bacteria in vitro. Asian-Australas J Anim Sci 2013;26:668-74. https://doi.org/10.5713/ajas.2012.12589
- Flythe MD, Kagan I. Antimicrobial effect of red clover (Tri-folium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr Microbiol 2010;61:125-31. https://doi.org/10.1007/s00284-010-9586-5
- Flythe MD, Harlow BE, Aiken GE, Gellin GL, Kagan IA, Pappas J. Inhibition of growth and ammonia production of ruminal hyper ammonia-producing bacteria by chinook or galena hops after long-term storage. Fermentation 2017;3:68. https://doi.org/10.3390/fermentation3040068
- Shen J, Yu Z, Zhu W. Insights into the populations of proteolytic and amino acid-fermenting bacteria from microbiota analysis using in vitro enrichment cultures. Curr Microbiol 2018;75:1543-50. https://doi.org/10.1007/s00284-018-1558-1
- Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2012;7:1147-71. https://doi.org/10.2217/fmb.12.97
- Gerstmans H, Criel B, Briers Y. Synthetic biology of modular endolysins. Biotechnol Adv 2018;36:624-40. https://doi.org/10.1016/j.biotechadv.2017.12.009
- Jiang Y, Xu D, Wang L, et al. Characterization of a broad-spectrum endolysin LysSP1 encoded by a Salmonella bacteriophage. Appl Microbiol Biotechnol 2021;105:5461-70. https://doi.org/10.1007/s00253-021-11366-z
- Lai MJ, Lin NT, Hu A, et al. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl Microbiol Biotechnol 2011;90:529-39. https://doi.org/10.1007/s00253-011-3104-y
- Wang C, Shi S, Wei M, Luo Y. Characterization of a novel broad-spectrum endolysin PlyD4 encoded by a highly conserved prophage found in Aeromonas hydrophila ST251 strains. Appl Microbiol Biotechnol 2022;106:699-711. https://doi.org/10.1007/s00253-021-11752-7
- Kim HB, Lee HG, Kwon IH, Seo JK. Characterization of endolysin LyJH307 with antimicrobial activity against Streptococcus bovis. Animals 2020;10:963. https://doi.org/10.3390/ani10060963
- Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic acids Res 2012;40:e126. https://doi.org/10.1093/nar/gks406
- Bustamante N, Campillo NE, Garcia E, et al. Cpl-7, a lysozyme encoded by a pneumococcal bacteriophage with a novel cell wall-binding motif. J Biol Chem 2010;285:33184-96. https://doi.org/10.1074/jbc.M110.154559
- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772-80. https://doi.org/10.1093/molbev/mst010
- Zhou L, Feng T, Xu S, et al. ggmsa: a visual exploration tool for multiple sequence alignment and associated data. Brief Bioinform 2022;23:bbac222. https://doi.org/10.1093/bib/bbac222
- Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods 2022;19:679-82. https://doi.org/10.1038/s41592-022-01488-1
- Goddard TD, Huang CC, Meng EC, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 2018;27:14-25. https://doi.org/10.1002/pro.3235
- Goering HK, Van Soest PJ. Forage fiber analysis (apparatus, reagents, prcedures, and some applications). Agriculture Handbook No. 379. Washington, DC, USA: US Agriculture Research Service; 1970.
- Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004;36:808-12. https://doi.org/10.2144/04365ST04
- Kim HB, Kim BW, Cho SK, Kwon IH, Seo JK. Dietary lysophospholipids supplementation inhibited the activity of lipolytic bacteria in forage with high oil diet: an in vitro study. Asian-Australas J Anim Sci 2020;33:1590-8. https://doi.org/10.5713/ajas.19.0850
- Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008;3:1101-8. https://doi.org/10.1038/nprot.2008.73
- Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol 2006;7:232. https://doi.org/10.1186/gb-2006-7-8-232
- Bustamante N, Iglesias-Bexiga M, Bernardo-Garcia N, et al. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep 2017;7:16494. https://doi.org/10.1038/s41598-017-16392-4
- Kikelomo AM. Preliminary physico-chemical investigation of local binding agents in mineral salt licks production for ruminants. Int J Environ Agric Biotechnol 2016;1:238626. http://doi.org/10.22161/ijeab/1.4.52
- Yang H, Wang M, Yu J, Wei H. Antibacterial activity of a novel peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa. Front Microbiol 2015;6:1471. https://doi.org/10.3389/fmicb.2015.01471
- Vouillamoz J, Entenza JM, Giddey M, Fischetti VA, Moreillon P, Resch G. Bactericidal synergism between daptomycin and the phage lysin Cpl-1 in a mouse model of pneumococcal bacteraemia. Int J Antimicrob Agents 2013;42:416-21. https://doi.org/10.1016/j.ijantimicag.2013.06.020
- Garcia JL, Garcia E, Arraras A, Garcia P, Ronda C, Lopez R. Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J Virol 1987;61:2573-80. https://doi.org/10.1128/jvi.61.8.2573-2580.1987
- Oliveira H, Sao-Jose C, Azeredo J. Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 2018;10:292. https://doi.org/10.3390/v10060292