과제정보
This study was supported by research grant from Biomedical Research Institute, Chung-Ang University Hospital (2022).
참고문헌
- Chan SY, Kirsch CM, Jensen W, Sherck J. Tension pneumoperitoneum. West J Med 1996;165(1-2):61-64
- Tolstrup MB, Watt SK, Gogenur I. Morbidity and mortality rates after emergency abdominal surgery: an analysis of 4346 patients scheduled for emergency laparotomy or laparoscopy. Langenbecks Arch Surg 2017;402:615-623 https://doi.org/10.1007/s00423-016-1493-1
- Tau N, Cohen I, Barash Y, Klang E. Free abdominal gas on computed tomography in the emergency department: aetiologies and association between amount of free gas and mortality. Ann R Coll Surg Engl 2020;102:581-589 https://doi.org/10.1308/rcsann.2020.0057
- Chen SC, Yen ZS, Wang HP, Lin FY, Hsu CY, Chen WJ. Ultrasonography is superior to plain radiography in the diagnosis of pneumoperitoneum. Br J Surg 2002;89:351-354 https://doi.org/10.1046/j.0007-1323.2001.02013.x
- Stapakis JC, Thickman D. Diagnosis of pneumoperitoneum: abdominal CT vs. upright chest film. J Comput Assist Tomogr 1992;16:713-716 https://doi.org/10.1097/00004728-199209000-00008
- Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019;380:1347-1358 https://doi.org/10.1056/NEJMra1814259
- De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-1350 https://doi.org/10.1038/s41591-018-0107-6
- Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221-248 https://doi.org/10.1146/annurev-bioeng-071516-044442
- Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021;3:199-217 https://doi.org/10.1038/s42256-021-00307-0
- Gou J, Yu B, Maybank SJ, Tao D. Knowledge distillation: a survey. Int J Comput Vis 2021;129:1789-1819 https://doi.org/10.1007/s11263-021-01453-z
- de Cea MVS, Gruen D, Richmond D. Pneumoperitoneum detection in chest X-ray by a deep learning ensemble with model explainability. In: Institute of Electrical and Electronics Engineers (IEEE). 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI); 2021 April 13-16; Nice, France. IEEE; 2021. p. 1637-1641
- Goyal M, Austin-Strohbehn J, Sun SJ, Rodriguez K, Sin JM, Cheung YY, et al. Sensitivity and specificity evaluation of deep learning models for detection of pneumoperitoneum on chest radiographs. In: Tucker A, Henriques Abreu P, Cardoso J, Pereira Rodrigues P, Riano D, eds. 19th International Conference on Artificial Intelligence in Medicine; 2021 June 15-18; Portugal. Porto: Springer; 2021. p. 307-317
- Kim M, Kim JS, Lee C, Kang BK. Detection of pneumoperitoneum in the abdominal radiograph images using artificial neural networks. Eur J Radiol Open 2020;8:100316
- Su CY, Tsai TY, Tseng CY, Liu KH, Lee CW. A deep learning method for alerting emergency physicians about the presence of subphrenic free air on chest radiographs. J Clin Med 2021;10:254
- Park S, Kim G, Oh Y, Seo JB, Lee SM, Kim JH, et al. Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation. Nat Commun 2022;13:3848
- Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, et al. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: AAAI Press. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19); 2019 January 27-February 1; Honolulu, USA. Palo Alto: PKP Publishing Services Network; 2019. p. 590-597
- Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 [Preprint]. [posted October 22, 2020; revised June 3, 2021; cited January 1, 2022]. https://arxiv.org/abs/2010.11929
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Agapito L, Berg T, Jana Kosecka, Zelnik-Manor L (Program Chair). 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 June 26-July 1; Las Vegas, USA. Las Vegas: IEEE; 2016. p. 770-778
- DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845 https://doi.org/10.2307/2531595
- Cheplygina V, de Bruijne M, Pluim JPW. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med Image Anal 2019;54:280-296 https://doi.org/10.1016/j.media.2019.03.009
- Raza K, Singh NK. A tour of unsupervised deep learning for medical image analysis. Curr Med Imaging 2021;17:1059-1077 https://doi.org/10.2174/1573405617666210127154257
- Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. Self-supervised learning for medical image analysis using image context restoration. Med Image Anal 2019;58:101539
- Liu Q, Yu L, Luo L, Dou Q, Heng PA. Semi-supervised medical image classification with relation-driven self-ensembling model. IEEE Trans Med Imaging 2020;39:3429-3440 https://doi.org/10.1109/TMI.2020.2995518
- Xie Q, Luong MT, Hovy E, Le QV. Self-training with noisy student improves imagenet classification. In: Liu C, Mori G, Saenko K, Savarese S (Program Chair). 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 June 14-19; 2020. Seattle: IEEE; p. 10687-10698
- Caron M, Touvron H, Misra I, Jegou H, Mairal J, Bojanowski P, et al. Emerging properties in self-supervised vision transformers. In: Hassner T, Pal C, Sato Y, Damen D (Program Chair). 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 October 11-17; Montreal, Canada. Montreal: IEEE; 2021. p. 9630-9640
- Zhou J, Wei C, Wang H, Shen W, Xie C, Yuille A, et al. iBOT: image BERT pre-training with online tokenizer. arXiv:2111.07832 [Preprint]. [posted November 15, 2021; revised January 27, 2022; cited February 1, 2022]. https://arxiv.org/abs/2111.07832
- Kim G. Recent deep semi-supervised learning approaches and related works. arXiv:2106.11528 [Preprint]. [posted June 22, 2021; revised July 5, 2022; cited January 20, 2022]. https://arxiv.org/abs/2106.11528
- Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nat Rev Cancer 2018;18:500-510 https://doi.org/10.1038/s41568-018-0016-5
- Gayer G, Hertz M, Zissin R. Postoperative pneumoperitoneum: prevalence, duration, and possible significance. Semin Ultrasound CT MR 2004;25:286-289 https://doi.org/10.1053/j.sult.2004.03.009