DOI QR코드

DOI QR Code

Assessing Cerebral Oxygen Metabolism Changes in Patients With Preeclampsia Using Voxel-Based Morphometry of Oxygen Extraction Fraction Maps in Magnetic Resonance Imaging

  • Qihao Zhang (Department of Radiology, Weill Cornell Medical College) ;
  • Chaofan Sui (Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University) ;
  • Junghun Cho (Department of Biomedical Engineering, University at Buffalo, The State University of New York) ;
  • Linfeng Yang (Department of Radiology, Jinan Maternity and Child Care Hospital) ;
  • Tao Chen (Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital) ;
  • Bin Guo (Department of Radiology, Jinan Maternity and Child Care Hospital) ;
  • Kelly McCabe Gillen (Department of Radiology, Weill Cornell Medical College) ;
  • Jing Li (Department of Radiology, Beijing Friendship Hospital, Capital Medical University) ;
  • Lingfei Guo (Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University) ;
  • Yi Wang (Department of Radiology, Weill Cornell Medical College)
  • Received : 2022.09.06
  • Accepted : 2023.01.28
  • Published : 2023.04.01

Abstract

Objective: The objective of this study was to analyze the different brain oxygen metabolism statuses in preeclampsia using magnetic resonance imaging and investigate the factors that affect cerebral oxygen metabolism in preeclampsia. Materials and Methods: Forty-nine women with preeclampsia (mean age 32.4 years; range, 18-44 years), 22 pregnant healthy controls (PHCs) (mean age 30.7 years; range, 23-40 years), and 40 non-pregnant healthy controls (NPHCs) (mean age 32.5 years; range, 20-42 years) were included in this study. Brain oxygen extraction fraction (OEF) values were computed using quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level-dependent magnitude-based OEF mapping (QSM + quantitative blood oxygen level-dependent imaging or QQ) obtained with a 1.5-T scanner. Voxel-based morphometry (VBM) was used to investigate the differences in OEF values in the brain regions among the groups. Results: Among the three groups, the average OEF values were significantly different in multiple brain areas, including the parahippocampus, multiple gyri of the frontal lobe, calcarine, cuneus, and precuneus (all P-values were less than 0.05, after correcting for multiple comparisons). The average OEF values of the preeclampsia group were higher than those of the PHC and NPHC groups. The bilateral superior frontal gyrus/bilateral medial superior frontal gyrus had the largest size of the aforementioned brain regions, and the OEF values in this area were 24.2 ± 4.6, 21.3 ± 2.4, and 20.6 ± 2.8 in the preeclampsia, PHC, and NPHC groups, respectively. In addition, the OEF values showed no significant differences between NPHC and PHC. Correlation analysis revealed that the OEF values of some brain regions (mainly involving the frontal, occipital, and temporal gyrus) were positively correlated with age, gestational week, body mass index, and mean blood pressure in the preeclampsia group (r = 0.361-0.812). Conclusion: Using whole-brain VBM analysis, we found that patients with preeclampsia had higher OEF values than controls.

Keywords

Acknowledgement

We thank all of the volunteers and patients for their participation in our study.

References

  1. Garovic VD, Dechend R, Easterling T, Karumanchi SA, McMurtry Baird S, Magee LA, et al. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American heart association. Hypertension 2022;79:e21-e41
  2. Sinkey RG, Battarbee AN, Bello NA, Ives CW, Oparil S, Tita ATN. Prevention, diagnosis, and management of hypertensive disorders of pregnancy: a comparison of international guidelines. Curr Hypertens Rep 2020;22:66
  3. Garrido-Gimenez C, Mendoza M, Cruz-Lemini M, Galian-Gay L, Sanchez-Garcia O, Granato C, et al. Angiogenic factors and long-term cardiovascular risk in women that developed preeclampsia during pregnancy. Hypertension 2020;76:1808-1816
  4. Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Renal Physiol 2020;318:F1315-F1326
  5. Johnson AC, Cipolla MJ. Altered hippocampal arteriole structure and function in a rat model of preeclampsia: potential role in impaired seizure-induced hyperemia. J Cereb Blood Flow Metab 2017;37:2857-2869
  6. Miller EC. Preeclampsia and cerebrovascular disease. Hypertension 2019;74:5-13
  7. Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, et al. Chronic hypoxia in ovine pregnancy recapitulates physiological and molecular markers of preeclampsia in the mother, placenta, and offspring. Hypertension 2022;79:1525-1535
  8. Fan AP, An H, Moradi F, Rosenberg J, Ishii Y, Nariai T, et al. Quantification of brain oxygen extraction and metabolism with [(15)O]-gas PET: a technical review in the era of PET/MRI. Neuroimage 2020;220:117136
  9. Liu D, Jiang D, Tekes A, Kulikowicz E, Martin LJ, Lee JK, et al. Multi-parametric evaluation of cerebral hemodynamics in neonatal piglets using non-contrast-enhanced magnetic resonance imaging methods. J Magn Reson Imaging 2021;54:1053-1065
  10. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984;25:177-187
  11. Federau C, Maeder P, O'Brien K, Browaeys P, Meuli R, Hagmann P. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology 2012;265:874-881
  12. Nelander M, Hannsberger D, Sundstrom-Poromaa I, Bergman L, Weis J, Akerud H, et al. Assessment of cerebral perfusion and edema in preeclampsia with intravoxel incoherent motion MRI. Acta Obstet Gynecol Scand 2018;97:1212-1218
  13. Cho J, Kee Y, Spincemaille P, Nguyen TD, Zhang J, Gupta A, et al. Cerebral metabolic rate of oxygen (CMRO(2) ) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn Reson Med 2018;80:1595-1604
  14. Yang L, Cho J, Chen T, Gillen KM, Li J, Zhang Q, et al. Oxygen extraction fraction (OEF) assesses cerebral oxygen metabolism of deep gray matter in patients with pre-eclampsia. Eur Radiol 2022;32:6058-6069
  15. Goto M, Abe O, Hagiwara A, Fujita S, Kamagata K, Hori M, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: a review of various applications. Magn Reson Med Sci 2022;21:41-57
  16. Khan AR, Wang L, Beg MF. Unified voxel- and tensor-based morphometry (UVTBM) using registration confidence. Neurobiol Aging 2015;36 Suppl 1:S60-S68
  17. de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206
  18. Yablonskiy DA, Sukstanskii AL, He X. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. NMR Biomed 2013;26:963-986
  19. Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med 2013;69:467-476
  20. Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 2011;24:1129-1136
  21. Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y. MEDI+0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med 2018;79:2795-2803
  22. Cho J, Zhang S, Kee Y, Spincemaille P, Nguyen TD, Hubertus S, et al. Cluster analysis of time evolution (CAT) for quantitative susceptibility mapping (QSM) and quantitative blood oxygen level-dependent magnitude (qBOLD)-based oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO(2)) mapping. Magn Reson Med 2020;83:844-857
  23. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007;38:95-113
  24. Pengas G, Pereira JM, Williams GB, Nestor PJ. Comparative reliability of total intracranial volume estimation methods and the influence of atrophy in a longitudinal semantic dementia cohort. J Neuroimaging 2009;19:37-46
  25. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013;4:627-635
  26. Hajian-Tilaki K. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods Med Res 2018;27:2374-2383
  27. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845
  28. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682
  29. ter Laan M, van Dijk JM, Elting JW, Staal MJ, Absalom AR. Sympathetic regulation of cerebral blood flow in humans: a review. Br J Anaesth 2013;111:361-367
  30. Jones-Muhammad M, Warrington JP. Cerebral blood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy. Brain Sci 2019;9:224
  31. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Preeclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 2019;15:275-289
  32. Lin W, Powers WJ. Oxygen metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2018;38:1481-1499
  33. Zhang S, Cho J, Nguyen TD, Spincemaille P, Gupta A, Zhu W, et al. Initial experience of challenge-free MRI-based oxygen extraction fraction mapping of ischemic stroke at various stages: comparison with perfusion and diffusion mapping. Front Neurosci 2020;14:535441
  34. Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, et al. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. J Cereb Blood Flow Metab 2020;40:539-551
  35. Miller TR, Shivashankar R, Mossa-Basha M, Gandhi D. Reversible cerebral vasoconstriction syndrome, part 1: epidemiology, pathogenesis, and clinical course. AJNR Am J Neuroradiol 2015;36:1392-1399
  36. Fugate JE, Rabinstein AA. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol 2015;14:914-925
  37. Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol 2012;11:906-917
  38. Shankar J, Banfield J. Posterior reversible encephalopathy syndrome: a review. Can Assoc Radiol J 2017;68:147-153
  39. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol 2020;76:1690-1702
  40. Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019;393:689-701
  41. Chayer C, Freedman M. Frontal lobe functions. Curr Neurol Neurosci Rep 2001;1:547-552
  42. Aminoff EM, Kveraga K, Bar M. The role of the parahippocampal cortex in cognition. Trends Cogn Sci 2013;17:379-390
  43. Utevsky AV, Smith DV, Huettel SA. Precuneus is a functional core of the default-mode network. J Neurosci 2014;34:932-940
  44. Wang X, Zhang R, Chen Z, Zhou F, Feng T. Neural basis underlying the relation between boredom proneness and procrastination: The role of functional coupling between precuneus/cuneus and posterior cingulate cortex. Neuropsychologia 2021;161:107994
  45. Blankenship TL, O'Neill M, Deater-Deckard K, Diana RA, Bell MA. Frontotemporal functional connectivity and executive functions contribute to episodic memory performance. Int J Psychophysiol 2016;107:72-82
  46. Wang P, Zhang H, Han L, Zhou Y. Cortical function in Alzheimer's disease and frontotemporal dementia. Transl Neurosci 2016;7:116-125
  47. Landin-Romero R, Kumfor F, Leyton CE, Irish M, Hodges JR, Piguet O. Disease-specific patterns of cortical and subcortical degeneration in a longitudinal study of Alzheimer's disease and behavioural-variant frontotemporal dementia. Neuroimage 2017;151:72-80
  48. Cho J, Lee J, An H, Goyal MS, Su Y, Wang Y. Cerebral oxygen extraction fraction (OEF): comparison of challenge-free gradient echo QSM+qBOLD (QQ) with (15)O PET in healthy adults. J Cereb Blood Flow Metab 2021;41:1658-1668
  49. Wu D, Zhou Y, Cho J, Shen N, Li S, Qin Y, et al. The spatiotemporal evolution of MRI-derived oxygen extraction fraction and perfusion in ischemic stroke. Front Neurosci 2021;15:716031
  50. Cho J, Zhang J, Spincemaille P, Zhang H, Hubertus S, Wen Y, et al. QQ-NET - using deep learning to solve quantitative susceptibility mapping and quantitative blood oxygen level dependent magnitude (QSM+qBOLD or QQ) based oxygen extraction fraction (OEF) mapping. Magn Reson Med 2022;87:1583-1594
  51. Zhang Q, Nguyen T, Ivanize J, Wang Y. High resolution water exchange rate mapping using 3D diffusion prepared arterial spin labeled perfusion MRI. ISMRM & SMRT Virtual Conference & Exhibition.com Web site. https://cds.ismrm.org/protected/20MProceedings/PDFfiles/0034.html. Published August 14, 2020. Accessed August 10, 2020