Acknowledgement
The authors acknowledge the Asociacion Mexicana de Criadores de Ganado Suizo de Registro (AMCGSR, Mexico City) and the collaborating breeders for permitting the use of their databases for this study. Special thanks to the Consejo Nacional de Ciencia y Tecnologia, Mexico, for providing financial support to the first author for his Doctorate studies.
References
- Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975;31:423-47. https://doi.org/10.2307/2529430
- VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
- Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157:1819-29. https://doi.org/10.1093/genetics/157.4.1819
- Gianola D. Priors in whole-genome regression: the bayesian alphabet. Genetics 2013;194:573-96. https://doi.org/10.1534/genetics.113.151753
- Legarra A. Christensen OF, Aguilar I, Misztal I. Single Step, a general approach for genomic selection. Livest Sci 2014;166:54-65. https://doi.org/10.1016/j.livsci.2014.04.029
- Christensen O, Lund M. Genomic prediction when some animals are not genotyped. Genet Sel Evol 2010;42:2. https://doi.org/10.1186/1297-9686-42-2
- Aguilar I, Misztal I, Legarra A, Tsuruta S. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J Anim Breed Genet 2011; 128:422-8. https://doi.org/10.1111/j.1439-0388.2010.00912.x
- Liu Z, Goddard ME, Reinhardt F, Reents R. A single-step genomic model with direct estimation of marker effects. J Dairy Sci 2014;97:5833-50. https://doi.org/10.3168/jds.2014-7924
- Fernando RL, Dekkers JCM, Garrick DJ. A class of Bayesian methods to combine large numbers of genotyped and nongenotyped animals for whole-genome analyses. Genet Sel Evol 2014; 46:50. https://doi.org/10.1186/1297-9686-46-50
- Fernando RL, Cheng H, Golden BL, Garrick DJ. Computational strategies for alternative single-step Bayesian regression models with large numbers of genotyped and non-genotyped animals. Genet Sel Evol 2016;48:96. https://doi.org/10.1186/s12711-016-0273-2
- Ashraf B, Edriss V, Akdemir D, et al. Genomic prediction using phenotypes from pedigreed lines with no marker data. Crop Sci 2016;56:957-64. https://doi.org/10.2135/cropsci2015.02.0111
- Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G. Single-step methods for genomic evaluation in pigs. Animal 2012; 6:1565-71. https://doi.org/10.1017/s1751731112000742
- Perez-Rodriguez P, Crossa J, Rutkoski J, et al. Single-step genomic and pedigree Genotype × Environment interaction models for predicting wheat lines in international environments. Plant Genome 2017;10:plantgenome2016.09.0089. https://doi.org/10.3835/plantgenome2016.09.0089
- Yoshida GM, Carvalheiro R, Rodriguez FH, Lhorente JP. Genomics single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics 2019; 111:127-32. https://doi.org/10.1016/j.ygeno.2018.01.008
- Cornelissen MAMC, Mullaart E, Van der Linde C, Mulder HA. Estimating variance components and breeding values for number of oocytes and number of embryos in dairy cattle using a single-step genomic evaluation. J Dairy Sci 2017;100:4698-705. https://doi.org/10.3168/jds.2016-12075
- Tiezzi F, Parker-Gaddis KL, Cole JB, Clay JS, Maltecca C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS ONE 2015;10:e0114919. https://doi.org/10.1371/journal.pone.0114919
- Koivula M, Stranden I, Poso J, Aamand GP, Mantysaari EA. Single-step genomic evaluation using multitrait random regression model and test-day data. J Dairy Sci 2015;98:2775-84. https://doi.org/10.3168/jds.2014-8975
- Croue I, Ducrocq V. Genomic and single-step evaluations of carcass traits of young bulls in dual-purpose cattle. J Anim Breed Genet 2017;134:300-7. https://doi.org/10.1111/jbg.12261
- Abdalla EEA, Schenkel FS, Begli HE, et al. Single-step methodology for genomic evaluation in turkeys (Meleagris gallopavo). Front Genet 2019;10:1248. https://doi.org/10.3389/fgene.2019.01248
- Nilforooshan MA. Application of single-step GBLUP in New Zealand Romney sheep. Anim Prod Sci 2020;60:1136-44. https://doi.org/10.1071/AN19315
- Nilforooshan MA, Lee M. The quality of the algorithm for proven and young with various sets of core animals in a multibreed sheep population. J Anim Sci 2019;97:1090-100. https://doi.org/10.1093/jas/skz010
- Carrilier C, Larroque H, Robert-Granie C. Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population. Gen Sel Evol 2014;46:67. https://doi.org/10.1186/s12711-014-0067-3
- Nunez-Dominguez R, Ramirez-Valverde R, Ruiz-Flores A, Dominguez-Viveros J. Genetic evaluation of Braunvieh sires. Chapingo, Mexico: Zootechnics Department, Chapingo Autonomous University; 2014.
- Jarquin D, Crossa J, Lacaxe X, et al. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 2014;127:595-607. https://doi.org/10.1007/s00122-013-2243-1
- Jarquin D, Howard R, Graef G, Lorenz A. Response surface analysis of genomic prediction accuracy values using quality control covariates in soybean. Evol Bioinform Online. 2019; 15:1176934319831307. https://doi.org/10.1177/1176934319831307
- Vazquez AI, Bates DM, Rosa GJM, Gianola D, Weigel KA. Technical Note: An R package for fitting generalized linear mixed models in animal breeding. J Anim Sci 2013;88:497-504. https://doi.org/10.2527/jas.2009-1952
- Lopez-Cruz M, Crossa J, Bonnett D, et al. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. G3 (Bethesda) 2015;5:569-82. https://doi.org/10.1534/g3.114.016097
- Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014; 198:483-95. https://doi.org/10.1534/genetics.114.164442
- Montes VD, Barragan HW, Vergara GO. Genetic parameters for productive and reproductive characteristics for beef cattle in Colombia. Revista Colombiana de Ciencia Animal-RECIA 2009;1:302-18. https://doi.org/10.24188/recia.v1.n2.2009.374
- Utrera AR, Velazquez GM, Murillo VEV, Bermudez MM. Genetic effects for growth traits of Mexican Charolais and Charbray cattle estimated with alternative models. Rev Mex Cienc Pec 2012;3:275-90.
- Ma D, Yu Q, Hedrick VE, et al. Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M. longissimus from different callipyge genotypes. Meat Sci 2020;166:108140. https://doi.org/10.1016/j.meatsci.2020.108140
- Park MN, Alam M, Kim S, Park B, Lee SH, Lee SS. Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle. Asian-Australas J Anim Sci 2020;33:1544-57. https://doi.org/10.5713/ajas.18.0936