DOI QR코드

DOI QR Code

Strength prediction and correlation of concrete by partial replacement of fly ash & silica fume

  • Kanmalai C. Williams (IPMCS Pvt. Ltd.) ;
  • R. Balamuralikrishnan (Department of Civil & Environmental Engineering, College of Engineering, National University of Science & Technology)
  • Received : 2022.07.02
  • Accepted : 2024.06.17
  • Published : 2023.12.25

Abstract

Strength prediction and correlation of concrete is done using experimental and analytical methods. Main objective is to correlate the experimental and simulated values of compressive strength of concrete mix using Fly Ash (FA) and Silica Fume (SF) by partial replacement of cement in concrete. Mix proportion was determined using IS method for M40grade concrete. Hundred and forty-seven cubes were cast and tested using Universal Testing Machine (UTM). Genetic Algorithm (GA) model was developed using C++ program to simulate the compressive strength of concrete for various proportions of FA and SF replacements individually at 3% increments. Experiments reveal that 12 percent silica fume replacement produced maximum compressive strength of 35.5 N/mm2, 44.5 N/mm2 and 54.8 N/mm2 moreover 9 percent fly ash replacement produced a maximum strength of 31.9 N/mm2, 37.6 N/mm2 and 51.8 N/mm2 during individual material replacement of concrete mix. Correlation coefficient for each curing period of fly ash and silica fume replaced mix were acquired using trend lines. The correlation coefficient is found to be approximately 0.9 in FA and SF replaced mix irrespective of the mix proportion and age of concrete. A higher and positive correlation was found between the experimental and simulated values irrespective of the curing period in all the replacements.

Keywords

References

  1. Abbasi, M., Rafiee, M., Khosravi, M.R., Jolfaei, A., Menon, V.G. and Koushyar, J.M. (2020), "An efficient parallel genetic algorithm solution for vehicle routing problem in cloud implementation of the intelligent transportation systems", J. Cloud Comput.: Adv. Syst. Applicat., 9(6), 1-14. https://doi.org/10.1186/s13677-020-0157-4
  2. Akshatha, K.B. (2018), "Experimental study of concrete using silica fume", Int. Res. J. Eng. Technol., 5(5), 769-771.
  3. Aziz, G., Chowdhury, R. and Mandal, P. (2019), "A Study on Concrete with Partial Replacement of Fresh Aggregate by recycled Aggregate", Int. J. Tech. Innov. Modern Eng. Sci., 5(3), 1-9. https://www.researchgate.net/publication/339927248_A_STUDY_ON_CONCRETE_WITH_PARTIAL_REPLACEMENT_OF_FRESH_AGGREGATE_BY_RECYCLED_AGGREGATE
  4. Chakraborty, J. and Banerjee, S. (2016), "Replacement of cement by fly ash in concrete", SSRG Int. J. Civil Eng., 3(8), 40-42.
  5. Chore, H.S. and Joshi, M.P. (2021), "Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction", Adv. Concrete Constr., Int. J., 12(5), 419-427. https://doi.org/10.12989/acc.2021.12.5.411
  6. Jilowa, P., Pareek, R.K. and Singh, V. (2015), "An Experimental Study on Strength of Concrete by Partial Replacement of Cement with Fly Ash and Rice Husk Ash with addition of Steel Fibres", Int. J. Emerg. Technol., 6(2), 131-138.
  7. Kalra, M. and Mehmood, G. (2018), "A review paper on the Effect of different types of coarse aggregate on Concrete", In: IOP Conference Series: Material Science & Engineering, 1-7. https://doi.org/10.1088/1757-899X/431/8/082001
  8. Kanamarlapudi, L., Jonalagadda, K.B., Jagarapu, D.C.K. and Eluru, A. (2020), "Different mineral admixtures in concrete: a review", SN Appl. Sci., 2, 1-10. https://doi.org/10.1007/s42452-020-2533-6
  9. Kandiri, A., Sartipi, F. and Kioumarsi, M. (2021), "Predicting compressive strength of concrete containing recycled aggregate using modified ANN with different optimization algorithms", Appl. Sci. J., 11(2), 1-19. https://doi.org/10.3390/app11020485
  10. Katoch, S., Chauhan, S.S. and Kumar, V. (2020), "A review on genetic algorithm: past, present, and future", Multimed. Tools Applicat., 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-6
  11. Kesharwani, K.C., Biswas, A.K., Chaurasiya, A. and Rabbani, A. (2017), "Experimental study on use of fly ash in concrete", Int. Res. J. Eng. Technol., 4(9), 1527-1530.
  12. Memon, B.A., Oad, M., Buller, A.H., Shar, S.A., Buller, A.S. and Abro, F.R. (2019), "Effect of Mould Size on Compressive Strength of Green Concrete Cubes", Civil Eng. J., 5(5), 1181-1188. https://doi.org/10.28991/cej-2019-03091322
  13. Mohe, N.S., Shewalul, Y.W. and Agon, E.C. (2022), "Experimental investigation on mechanical properties of concrete using different sources of water for mixing and curing concrete", Case Stud. Constr. Mater., 16, p. e00959.
  14. Naseri, H. (2019), "Cost optimization of no-slump concrete using genetic algorithm and particle swarm optimization", Int. J. Innov. Manag. Technol., 10(1), 33-37. https://doi.org/10.18178/ijimt.2019.10.1.832
  15. Naseri, H., Jahanbakhsh, H., Moghadas Nejad, F. and Golroo, A. (2019), "Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages", AUT J. Civil Eng., 4(4), 1-16. https://doi.org/10.22060/ajce.2019.16124.5569
  16. Padavala, S.S.A.B., Kode, V.R. and Dey, S. (2023), "Bond strength of fly ash and silica fume blended concrete mixes", Res. Square, 25, 895-909.
  17. Prasad, E.V., Manoj, A.P. and Teja, U.S. (2020), "Study on mechanical and durability properties of ternary blended concrete", Mater. Today: Proceedings., 56, 514-519. https://doi.org/10.1016/j.matpr.2022.02.175
  18. Raza, M.S., Kumar, H., Rai, K., Kumar, D. and Bheel, N. (2020), "Effect of various curing methods and curing ages on compressive strength of plain concrete", Quest Res. J., 18(2), 29-32. https://doi.org/10.52584/QRJ.1802.04
  19. Sahani, A.K., Samanta, A.K. and Singhroy, D.K. (2018), "An experimental study on strength development of concrete with optimum blending of fly ash and granulated blast furnace slag", Int. J. Appl. Eng. Res., 13(8), 5700-5710.
  20. Sapehiya, S., Kumar, A., Mehta, K. and Mahajan, A. (2020), "Partial Replacement of Cement by Fly Ash and Addition of Plastic Waste Fibers in Concrete", Int. J. Modern Trends Eng., 7(1), 25-38.
  21. Samuel, J. and Raju, K.L. (2018), "Experimental Study on Partial Replacement of Fine Aggregate by Waste Glass Powder and CNC Lathe Waste", Int. J. Scientif. Res. Develop., 6(10), 557-562.
  22. Selvapriya, R. (2019), "Silica fume as partial replacement of cement in concrete", Int. Res. J. Multidiscipl. Technov., 1(6), 325-333.
  23. Shmlls, M., Bozsaky, D. and Horvath, T. (2021), "Compressive, flexural and splitting strength of fly ash and silica fume concrete", Pollack Periodica, 17(1), 50-55. https://doi.org/10.1556/606.2021.00448
  24. Siddiqui, A.R. (2023), "Experimental Study on the Mutual Influence of Fly Ash, Silica Fume & Fibers on Strength Enhancement of Portland Cement", Int. J. Res. Appl. Sci. Eng. Technol., 11(11), 1144-1152. https://doi.org/10.22214/ijraset.2023.56718
  25. Sri Charan, K., Hameeduddin, Z., Sohail, M. and Khan, S.U. (2021), "Experimental Study on Concrete Cube Test for Compressive Strength by using Recycled Coarse Aggregate", Int. Res. J. Eng. Technol., 8(3), 3025-3028.
  26. Wagan, F.H., Hisbani, N.Q. and Wagan, G.H. (2019), "Effect of strength of concrete by partial replacement of ordinary Portland cement with silica fume", Am. J. Mech. Applicat., 7(1), 10-14. https://doi.org/10.11648/j.ajma.20190701.12