DOI QR코드

DOI QR Code

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge (Physical Education Department, Xi'an Jiaotong University) ;
  • Yuxin Hong (Schools of Materials Science and Engineering, Xi'an Jiaotong University) ;
  • Rongtian Zeng (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yunbin Li (Physical Education Department, Xi'an Jiaotong University) ;
  • Mostafa Habibi (Faculty of Architecture and Urbanism, UTE University)
  • 투고 : 2022.10.14
  • 심사 : 2024.06.04
  • 발행 : 2023.12.25

초록

As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

키워드

참고문헌

  1. Ajayan, P.M. and Tour, J.M. (2007), "Nanotube composites", Nature, 447(7148), 1066-1068. https://doi.org/10.1038/4471066a
  2. Ali, A., Tufail, M.K., Jamil, M.I., Yaseen, W., Iqbal, N., Hussain, M., Ali, A., Aziz, T., Fan, Z. and Guo, L. (2021), Comparative Analysis of Ethylene/Diene Copolymerization and Ethylene/Propylene/Diene Terpolymerization Using Ansa-Zirconocene Catalyst with Alkylaluminum/Borate Activator: The Effect of Conjugated and Nonconjugated Dienes on Catalytic Behavior and Polymer Microstructure.
  3. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5
  4. Barathi Dassan, E.G., Anjang Ab Rahman, A., Abidin, M.S.Z. and Akil, H.M. (2020), "Carbon nanotube-reinforced polymer composite for electromagnetic interference application: A review", Nanotechnol. Rev., 9(1), 768-788. https://doi.org/10.1515/ntrev-2020-0064
  5. Bravaya, N.M., Faingol'd, E.E., Sanginov, E.A. and Badamshina, E.R. (2022), Homogeneous Group IVB Catalysts of New Generations for Synthesis of Ethylene-Propylene-Diene Rubbers: A Mini-Review.
  6. Cibo, M., Sator, A., Kazlagic, A. and Omanovic-Miklicanin, E. (2020), "Application and Impact of Nanotechnology in Sport", In: Proceedings of the 30th Scientific-Experts Conference of Agriculture and Food Industry, Cham. https://doi.org/10.1007/978-3-030-40049-1_44
  7. Dai, Y., Jiang, Z., Chen, K.-y., Zuo, D., Ali, H.E. and Albaijan, I. (2023a), "Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures", Steel Compos. Struct., Int. J., 48(4), 443-459. https://doi.org/10.12989/scs.2023.48.4.443
  8. Dai, Z., Tang, H., Wu, S., Habibi, M., Moradi, Z. and Ali, H.E. (2023b), "Nonlinear consecutive dynamic instabilities of thermally shocked composite circular plates on the softening elastic foundation", Thin-Wall. Struct., 186, 110645. https://doi.org/10.1016/j.tws.2023.110645
  9. Dai, Z., Wu, S., Habibi, M. and Ali, H.E. (2023c), "Application of point interpolation mesh-free method for magneto/electro rheological vibrations of sandwich conical panels", Aerosp. Sci. Technol., 108180. https://doi.org/10.1016/j.ast.2023.108180
  10. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499
  11. Ebrahimi, F., Hajilak, Z.E., Habibi, M. and Safarpour, H. (2019a), "Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 4590-4605. https://doi.org/10.1177/0954406219832323
  12. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2019b), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2019.1694729
  13. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus, 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x
  14. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141
  15. Gaharwar, A.K., Peppas, N.A. and Khademhosseini, A. (2014), "Nanocomposite hydrogels for biomedical applications", Biotechnol. Bioeng., 111(3), 441-453. https://doi.org/10.1002/bit.25160
  16. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527
  17. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5
  18. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8
  19. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770
  20. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., Int. J., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197
  21. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. https://jsm.arak.iau.ir/article_531824_c4e4e72f55b3a3a2cde7fda2f9b20ed3.pdf
  22. Gong, Z.G. (2013), "Nanotechnology Application in Sports", Adv. Mater. Res., 662, 186-189. https://doi.org/10.4028/www.scientific.net/AMR.662.186
  23. Guan, S. (2023), "Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise", Adv. Nano Res., Int. J., 15(2), 155-163. https://doi.org/10.12989/anr.2023.15.2.155
  24. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2020.1779086
  25. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2019.1662968
  26. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J. and Ansari, R. (2019), "Creep performance of CNT polymer nanocomposites - An emphasis on viscoelastic interphase and CNT agglomeration", Compos. Part B: Eng., 168, 274-281. https://doi.org/10.1016/j.compositesb.2018.12.093
  27. He, L. and Deng, Q. (2023), "Construction of sports engineering structures with high resistance to improve the quality of sports training", Struct. Eng. Mech., Int. J., 86(2), 211-220. https://doi.org/10.12989/sem.2023.86.2.211
  28. Hou, T.-C., Yang, Y., Zhang, H., Chen, J., Chen, L.-J. and Lin Wang, Z. (2013), "Triboelectric nanogenerator built inside shoe insole for harvesting walking energy", Nano Energy, 2(5), 856-862. https://doi.org/10.1016/j.nanoen.2013.03.001
  29. Huang, G. and Dai, J. (2022), "Study on the preparation of nano-powder and its mechanical properties on the sole of sports shoes", Ferroelectrics, 594(1), 206-222. https://doi.org/10.1080/00150193.2022.2078130
  30. Huang, J.Y., Chen, S., Wang, Z.Q., Kempa, K., Wang, Y.M., Jo, S.H., Chen, G., Dresselhaus, M.S. and Ren, Z.F. (2006), "Superplastic carbon nanotubes", Nature, 439(7074), 281-281. https://doi.org/10.1038/439281a
  31. Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q. and Zhu, M. (2015), "Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers", Nano Energy, 14, 226-235. https://doi.org/10.1016/j.nanoen.2015.01.038
  32. Iqbal, A., Saeed, A. and Ul-Hamid, A. (2021), "A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry", Polym. Bull., 78(1), 539-557. https://doi.org/10.1007/s00289-019-03096-0
  33. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concrete Constr., Int. J., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069
  34. Kravchenko, R. and Waymouth, R.M. (1998), "Ethylene-Propylene Copolymerization with 2-Arylindene Zirconocenes", Macromolecules. 31(1), 1-6. https://doi.org/10.1021/ma971037f
  35. Li, B.F. (2013), "Design of Sports Field Based on Nanometer Materials", Appl. Mech. Mater., 340, 366-369. https://doi.org/10.4028/www.scientific.net/AMM.340.366
  36. Li, Z. (2023), "Resistance of concrete made of fibers in weight lifting slabs against impact in sports training", Struct. Eng. Mech., Int. J., 86(3), 325-336. https://doi.org/10.12989/sem.2023.86.3.325
  37. Li, D. (2024), "An interactive teaching evaluation system for preschool education in universities based on machine learning algorithm", Comput. Human Behavior, 157, 108211. https://doi.org/10.1016/j.chb.2024.108211
  38. Li, J., Bin, N., Guo, F., Gao, X., Chen, R., Yao, H. and Zhou, C. (2023a), "Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development", Adv. Nano Res., Int. J., 15(1), 49-57. https://doi.org/10.12989/anr.2023.15.1.049
  39. Li, X., Ali, H.E. and Albaijan, I. (2023b), "TiO2-containing nanocomposite structure: Application and investigation in shoes sports medical soles in physical activities", Adv. Nano Res., Int. J., 15(4), 329-337. https://doi.org/10.12989/anr.2023.15.4.329
  40. Li, Z., Peng, S. and Chen, G. (2023c), "Research on safety assessment and application effect of nanomedical products in physical education", Adv. Nano Res., Int. J., 15(3), 253-261. https://doi.org/10.12989/anr.2023.15.3.253
  41. Liu, L., Tang, W., Deng, C., Chen, B., Han, K., Zhong, W. and Wang, Z.L. (2018), "Self-powered versatile shoes based on hybrid nanogenerators", Nano Res., 11(8), 3972-3978. https://doi.org/10.1007/s12274-018-1978-z
  42. Ma, Z., Qi, J., Xun, W. and Li, Y. (2023), "Sports injury treatment and sports rehabilitation employing the Nanoparticles containing zinc oxide", Adv. Nano Res., Int. J., 15(1), 67-74. https://doi.org/10.12989/anr.2023.15.1.067
  43. Maiti, S., Ray, D., Mitra, D. and Misra, M. (2012), "Study of compostable behavior of jute nano fiber reinforced biocopolyester composites in aerobic compost environment", J. Appl. Polym. Sci., 123(5), 2952-2958. https://doi.org/10.1002/app.34918
  44. Matos, M.A.S., Pinho, S.T. and Tagarielli, V.L. (2019), "Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites", Carbon, 146, 265-275. https://doi.org/10.1016/j.carbon.2019.02.001
  45. Maurya, R., Kumar, B., Ariharan, S., Ramkumar, J. and Balani, K. (2016), "Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy", Mater. Des., 98, 155-166. https://doi.org/10.1016/j.matdes.2016.03.021
  46. Mazhar, H., Shehzad, F., Hong, S.-G. and Al-harthi, M.A. (2022a), "Degradation kinetics and thermomechanical properties of in-situ polymerized layered double hydroxides-ethylene-propylene copolymer", J. Appl. Polym. Sci., 139(16), 52002. https://doi.org/10.1002/app.52002
  47. Mazhar, H., Shehzad, F., Hong, S.-G. and Al-Harthi, M.A. (2022b), Thermal Degradation Kinetics Analysis of Ethylene-Propylene Copolymer and EP-1-Hexene Terpolymer.
  48. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023
  49. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106
  50. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1
  51. Mohammadgholiha, M., Shokrgozar, A., Habibi, M. and Safarpour, H. (2019), "Buckling and frequency analysis of the nonlocal strain-stress gradient shell reinforced with graphene nanoplatelets", J. Vib. Control, 25(19-20), 2627-2640. https://doi.org/10.1177/1077546319863251
  52. Mohammadi, A., Lashini, H., Habibi, M. and Safarpour, H. (2019), "Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM", J. Solid Mech., 11(2), 440-453. https://doi.org/10.22034/JSM.2019.665264
  53. Mora, A., Verma, P. and Kumar, S. (2020), "Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling", Compos. Part B: Eng., 183, 107600. https://doi.org/10.1016/j.compositesb.2019.107600
  54. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455 1016455
  55. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentist., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002
  56. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Scientific Reports, 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w
  57. Pearson, D. and Graessley, W. (1980), "Elastic Properties of Well-Characterized Ethylene-Propylene Copolymer Networks", Macromole., 13(4), 1001-1009. https://doi.org/10.1021/ma60076a047
  58. Peng, S., Habibi, M. and Pourjabari, A. (2023), "Generalized differential quadrature element solution, swarm, and GA optimization technique to obtain the optimum frequency of the laminated rotary nanostructure", Eng. Anal. Bound. Elem., 151, 101-114. https://doi.org/10.1016/j.enganabound.2023.02.052
  59. Qi, L., Wang, Z., Sun, Y., Khorami, M., Mahmoudi, T. and Wu, H. (2024), "Modified couple stress and artificial intelligence examination of nonlinear buckling in porous variable thickness cylinder micro sport structures", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2024.2316795
  60. Sabzevari, F., Amelirad, O., Moradi, Z. and Habibi, M. (2023), "Artificial intelligence evaluation of COVID-19 restrictions and speech therapy effects on the autistic children's behavior", Scientific Reports, 13(1), 4312. https://doi.org/10.1038/s41598-022-25902-y
  61. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y
  62. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathe. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061
  63. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration Analysis of Rotary Tapered Axially Functionally Graded Timoshenko Nanobeam in Thermal Environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273
  64. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of Temperature Change on Modal Analysis of Rotary Functionally Graded Nano-beam in Thermal Environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html
  65. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020a), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01024-9
  66. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Mater., 13(7), 1707. https://doi.org/10.3390/ma13071707
  67. Shariati, M., Kamyab, H., Habibi, M., Ahmadi, S., Naghipour, M., Gorjinezhad, F., Mohammadirad, S. and Aminian, A. (2023), "Sulfuric acid resistance of concrete containing coal waste as a partial substitute for fine and coarse aggregates", Fuel, 348, 128311. https://doi.org/10.1016/j.fuel.2023.128311
  68. Shen, J. and Chan, Y.C. (2009), "Research advances in nano-composite solders", Microelectron. Reliabil., 49(3), 223-234. https://doi.org/10.1016/j.microrel.2008.10.004
  69. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9
  70. Shivanna, S., Subramani, N.K., Swamy, K., Nagaraj, S.K., Muthuraj, J.R.B. and Siddaramaiah, H. (2019), "Orange-red fluorescent polymer nanocomposite films with large stokes shift: An opto-electronic exercise", J. Luminesc., 208, 488-494. https://doi.org/10.1016/j.jlumin.2018.12.041
  71. Shokrgozar, A., Safarpour, H. and Habibi, M. (2020), "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(2), 512-529. https://doi.org/10.1177/0954406219883312
  72. Siddiqui, S., Kim, D.-I., Roh, E., Duy, L.T., Trung, T.Q., Nguyen, M.T. and Lee, N.-E. (2016), "A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system", Nano Energy, 30, 434-442. https://doi.org/10.1016/j.nanoen.2016.10.034
  73. Siro, I. and Plackett, D. (2010), "Microfibrillated cellulose and new nanocomposite materials: a review", Cellulose, 17(3), 459-494. https://doi.org/10.1007/s10570-010-9405-y
  74. Song, Z.Q. and Cai, Y.T. (2013), "Application of Nano-Materials in Sports Engineering", Adv. Mater. Res., 602-604, 281-284. https://doi.org/10.4028/www.scientific.net/AMR.602-604.281
  75. Song, S., Zhang, T. and Zhui, Z. (2023), "Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories", Steel Compos. Struct., Int. J., 49(5), 487-502. https://doi.org/10.12989/scs.2023.49.5.487
  76. Su, Q.F. (2014), "Analysis of New Materials in Competitive Sports", Appl. Mech. Mater., 539, 925-927. https://doi.org/10.4028/www.scientific.net/AMM.539.925
  77. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., Int. J., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355
  78. Vo, N.L.U., Van Nguyen, T.T., Nguyen, T., Nguyen, P.A., Nguyen, V.M., Nguyen, N.H., Tran, V.L., Phan, N.A. and Huynh, K.P.H. (2020), "Antibacterial Shoe Insole-Coated CuO-ZnO Nanocomposite Synthesized by the Sol-Gel Technique", J. Nanomater., 2020, 8825567. https://doi.org/10.1155/2020/8825567
  79. Walther, M., Herold, D., Sinderhauf, A. and Morrison, R. (2008), "Children sport shoes-A systematic review of current literature", Foot Ankle Surg., 14(4), 180-189. https://doi.org/10.1016/j.fas.2008.04.001
  80. Wang, X., Ding, B., Sun, G., Wang, M. and Yu, J. (2013), "Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets", Progress Mater. Sci., 58(8), 1173-1243. https://doi.org/10.1016/j.pmatsci.2013.05.001
  81. Wang, R., Zhang, Q., Zhang, Y., Shi, H., Nguyen, K.T. and Zhou, X. (2019), "Unconventional Split Aptamers Cleaved at Functionally Essential Sites Preserve Biorecognition Capability", Analyt. Chem., 91(24), 15811-15817. https://doi.org/10.1021/acs.analchem.9b04115
  82. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007
  83. Wood, D.S., Jensen, K., Crane, A., Lee, H., Dennis, H., Gladwell, J., Shurtz, A., Fullwood, D.T., Seeley, M.K., Mitchell, U.H., Christensen, W.F. and Bowden, A.E. (2022), Accurate Prediction of Knee Angles during Open-Chain Rehabilitation Exercises Using a Wearable Array of Nanocomposite Stretch Sensors.
  84. Xiang, J., Lai, Y., Moradi, Z. and Khorami, M. (2023), "Wave propagation phenomenon of functionally graded graphene oxide powder-strengthened nanocomposite curved beam", Solid State Commun., 115193. https://doi.org/10.1016/j.ssc.2023.115193
  85. Xu, N., Liu, X., Li, Y., Zong, G., Zhao, X. and Wang, H. (2024), "Dynamic Event-Triggered Control for a Class of Uncertain Strict-Feedback Systems via an Improved Adaptive Neural Networks Backstepping Approach", IEEE Transact. Automat. Sci. Eng., 1-10. https://doi.org/10.1109/TASE.2024.3374522
  86. Yan, C., Zhang, T., Zheng, T. and Mahmoudi, T. (2024a), "Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes", Steel Compos. Struct., Int. J., 50(4), 459-474. https://doi.org/10.12989/scs.2024.50.4.459
  87. Yan, C., Zhang, T., Zheng, T. and Mahmoudi, T. (2024b), "Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes", Steel Compos. Struct., Int. J., 50(4), 459-474. https://doi.org/10.12989/scs.2024.50.4.459
  88. Yang, Y. and Mao, Y. (2023), "Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction", Geomech. Eng., Int. J., 35(2), 181-194. https://doi.org/10.12989/gae.2023.35.2.181
  89. Yang, F. and Zhang, J. (2022), "Traditional Chinese Sports under China's Health Strategy", J. Environ. Public Health, 2022, 1381464. https://doi.org/10.1155/2022/1381464
  90. Yang, C., Su, C., Hu, H., Habibi, M., Safarpour, H. and Khadimallah, M.A. (2023), "Performance optimization of photovoltaic and solar cells via a hybrid and efficient chimp algorithm", Solar Energy, 253, 343-359. https://doi.org/10.1016/j.solener.2023.02.036
  91. Ye, M., HangKong, O., Lin, Y., Ynag, Q., Xu, Q., Chen, T., Sun, L. and Ma, L. (2023), "Electron transport properties of Y-type zigzag branched carbon nanotubes", Adv. Nano Res., Int. J., 15(3), 263-275. https://doi.org/10.12989/.2023.15.3.263
  92. Yu, S., Lee, S.H., Han, J.A., Ahn, M.S., Park, H., Han, S.W. and Lee, D.H. (2020), "Insulative ethylene-propylene copolymer-nanostructured polypropylene for high-voltage cable insulation applications", Polymer, 202, 122674. https://doi.org/10.1016/j.polymer.2020.122674
  93. Zhang, M. and Li, J. (2009), "Carbon nanotube in different shapes", Mater. Today, 12(6), 12-18. https://doi.org/10.1016/S1369-7021(09)70176-2
  94. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032
  95. Zhang, C., Liu, D., Zhang, X., Spencer, C., Tang, M., Zeng, J., Jiang, S., Jolivet, M. and Kong, X. (2020), "Hafnium isotopic disequilibrium during sediment melting and assimilation", Geochem. Perspect. Lett., 12, 34-39. https://doi.org/10.7185/geochemlet.2001
  96. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022a), "Distance-based Support Vector Machine to Predict DNA N6-methyladenine Modification", Current Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517
  97. Zhang, Y., Kang, X. and Jian, Z. (2022b), "Selective branch formation in ethylene polymerization to access precise ethylene-propylene copolymers", Nature Commun., 13(1), 725. https://doi.org/10.1038/s41467-022-28282-z
  98. Zhang, P., Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., Int. J., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235
  99. Zhang, P., Song, J. and Mahmoudi, T. (2023b), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., Int. J., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235
  100. Zhang, S., Lai, Y., Chen, K., Habibi, M., Khorami, M. and Haider Mussa, Z. (2023c), "Influence of MWCNT's waviness and aggregation factors on wave dispersion response of MWCNT-strengthened nanocomposite curved beam", Structures, 53, 1239-1249. https://doi.org/10.1016/j.istruc.2023.04.024
  101. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023d), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., Int. J., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293
  102. Zhang, Z., Du, J. and Mahmoudi, T. (2023e), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., Int. J., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355
  103. Zhao, H., Li, C., Fu, Y., Oyarhossein, M.A., Habibi, M. and Safarpour, H. (2023), "Quasi-static indentation, low-velocity impact, and resonance responses of the laminated double-curved panel considering various boundary conditions", Thin-Wall. Struct., 183, 110360. https://doi.org/10.1016/j.tws.2022.110360
  104. Zheng, W., Liu, J., Oyarhossein, M.A., Safarpour, H. and Habibi, M. (2023), "Prediction of nth-order derivatives for vibration responses of a sandwich shell composed of a magneto-rheological core and composite face layers", Eng. Anal. Bound. Elem., 146, 170-183. https://doi.org/10.1016/j.enganabound.2022.10.019
  105. Zhu, G., Bai, P., Chen, J. and Lin Wang, Z. (2013), "Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics", Nano Energy, 2(5), 688-692. https://doi.org/10.1016/j.nanoen.2013.08.002