DOI QR코드

DOI QR Code

Research on basic mechanical properties and damage mechanism analysis of BFUFARC

  • Yu H. Yang (School of Materials Science and Engineering, School of Architecture and Civil Engineering, Shenyang University of Technology) ;
  • Sheng J. Jin (School of Materials Science and Engineering, School of Architecture and Civil Engineering, Shenyang University of Technology) ;
  • Chang C. Shi (School of Materials Science and Engineering, School of Architecture and Civil Engineering, Shenyang University of Technology) ;
  • Wen P. Ma (School of Materials Science and Engineering, School of Architecture and Civil Engineering, Shenyang University of Technology) ;
  • Jia K. Zhao (School of Civil Engineering, Inner Mongolia University of Science and Technology)
  • Received : 2024.01.13
  • Accepted : 2024.05.31
  • Published : 2023.12.25

Abstract

In order to study the mechanical properties of basalt fiber reinforced ultra-fine fly ash concrete (BFUFARC), the effects of ultra-fine fly ash (UFA) content, basalt fiber content, basalt fiber length and water reducing agent content on the compressive strength, splitting tensile strength and flexural strength of the composite material were studied through experimental and theoretical analysis. Also, a scanning electron microscope (SEM) was employed to analyze the mesoscopic structure in the fracture surface of composite material specimens at magnifications of 500 and 3500. Besides, the energy release rate (Gc) and surface free energy (γs) of crack tip cracking on BFUFARC in different basalt fiber content were studied from the perspective of fracture mechanics. Further, the cracking resistance, reinforcement, and toughening mechanisms of basalt fibers on concrete substrate were revealed by surface free energy of BFUFARC. The experimental results indicated that basalt fiber content is the main influence factor on the splitting tensile strength of BFUFARC. In case that fiber content increased from 0 to 0.3%, the concrete surface free energy at the tip of single-sided crack showed a trend of increased at first and then decreased. The surface free energy reached at maximum, about 3.59 × 10-5 MN/m. During the process of increasing fiber content from 0 to 0.1%, GC-2γS showed a gradually decreasing trend. As a result, an appropriate amount of basalt fiber can play a preventing cracking role by increasing the concrete surface free energy, further effectively improve the concrete splitting tensile performance.

Keywords

Acknowledgement

This work was supported by International Natural Science Foundation (Grant No: 51279123) and Key Science and Technology Research Projects of Liaoning Provincial Department of Education (Grant No: LJKZZ20220025). Also, this work is carried out by Sheng-ji Jin, Yu-hao Yang, Chang-chun Shi, Wen-peng Ma and Jia-kang Zhao.

References

  1. Carrillo, J., Ramirez, J. and Lizarazo-Marriaga, J. (2019), "Modulus of elasticity and Poisson's ratio of fiber-reinforced concrete in Colombia from ultrasonic pulse velocities", J. Build. Eng., 23, 18-26. https://doi.org/10.1016/j.jobe.2019.01.016
  2. Chen, F.B., Xu, B., Jiao, H.Z., Chu, H.B., Wang, Y.F. and Liu, J.H. (2021), "Characterization of fiber distribution and pore structure in basalt fiber reinforced concrete", J. China Univ. Min. Technol., 50(02), 273-280.
  3. Diao, M.S., Sun, X.J., Wei, C.P. and Zhao, Y.W. (2021), "Analysis of compressive strength and microscopic numerical simulation of nano CaCO3 reinforced concrete", J. Qinghai Univ., 39(02), 69-76+112. https://doi.org/10.13901/j.cnki.qhwxxbzk.2021.02.010
  4. Ding, B., Gao, Y., Chen Y.L. and Li, X.Y. (2023), "Progress in Atomic Scale Fracture Simulation [J/OL]", J. Mech., 1-19. http://kns.cnki.net/kcms/detail/11.2062.O3.20230918.1025.002.html 1025.002.html
  5. Dueramae, S., Tangchirapat, W. and Jaturapitakkul, C. (2017), "Strength and heat generation of concrete using carbide lime and fly ash as a new cementitious material without Portland cement", Adv. Powder Technol., 29(3), 672-681. https://doi.org/10.1016/j.apt.2017.12.007
  6. Dvorkin, L., Konkol, J., Marchuk, V. and Huts, A. (2023), "Efficient, Fine-Grained Fly Ash Concrete Based on Metal and Basalt Fibers", Materials, 16(11), 3969. https://doi.org/10.3390/ma16113969
  7. Fan, M.T., Wang, Y.B., Su, Y., Li, J.W., Xiao, H.C. and He, X.Y. (2021), "Study on the influence of ultra-fine fly ash on cement performance and its application in concrete", New Build. Mater., 48(08), 16-20+37.
  8. Fasihihour, N., Abad, J.M.N., Karimipour, A. and Mohebbi, M.R. (2022), "Experimental and numerical model for mechanical properties of concrete containing fly ash: Systematic review", Measurement, 188, p.110547. https://doi.org/10.1016/j.measurement.2021.110547.
  9. Jin, S.J., Li, Z.L., Zhang, J. and Wang, Y.L. (2015), "Experimental study on freeze-thaw resistance of basalt fiber reinforced concrete under corrosion conditions", Eng. Mech., 32(05), 178-183.
  10. Jin, S.J., Wu, Y.Q., Yang, Y.H., Xu, L. and Yu, H. (2022), "Analysis of the Influence of BFUFAC Mechanical Properties", J. Shenyang Univ. Technol., 44(03), 341-348.
  11. Jin, S.J., Yang, Y.H., Sun, Y.M. and Xu, J.Y. (2023), "Experimental Research on Anti-freezing and Thawing Performance of Basalt Fiber Reinforced Fly Ash Concrete in the Corrosive Conditions", KSCE J. Civil Eng., 27(08), 3455-3470. https://doi.org/10.1007/s12205-023-1969-9
  12. Kevin, K. (2022), "Nano-samples give higher brittle strength by the Griffith energy principle", Philosoph. Transact. Royal Soc. A, 380(2232). https://doi.org/10.1098/RSTA.2021.0349
  13. Lee, S.J. (2014), "Mechanical properties of high performance concrete subjected to high temperature as a function of fly-ash and fiber addition", Adv. Mater. Res., 912, 227-230. https://doi.org/10.4028/www.scientific.net/AMR.912-914.227
  14. Luan, S., Chen, E. and Gaitanaros, S. (2022), "Energy-based fracture mechanics of brittle lattice materials", J. Mech. Phys. Solids, 169, p.105093.
  15. Peng, B., Wang, J., Dong, X., Yang, F., Sheng, C. and Liu, Y. (2023), "Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete", Adv. Concrete Constr., Int. J., 15(6), 419-430. https://doi.org/10.12989/acc.2023.15.6.419
  16. Roshani, M.M., Kargar, S.H., Farhangi, V. and Karakouzian, M. (2021), "Predicting the effect of fly ash on concrete's mechanical properties by ann", Sustainabil., 13(03), 1469. https://doi.org/10.3390/su13031469
  17. Sabbrojjaman, M., Islam, M.R. and Tafsirojjaman, T. (2019), "A study on Bangladeshi fly ash as a partial replacement of ordinary Portland cement in concrete production using different water cement ratio", Proceedings of the 6th International Conference on Integrated Solid Waste and Faecal Sludge Management in South-Asian Countries, Khulna, Bangladesh, February.
  18. Saradar, A., Nemati, P., Paskiabi, A.S., Moein, M.M., Moez, H. and Vishki, E.H. (2020), "Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: Experimental and numerical assessment", J. Build. Eng., 32, 101732. https://doi.org/10.1016/j.jobe.2020.101732
  19. Shelorkar, A.P. and Jadhao, P.D. (2022), "Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression", Adv. Concrete Constr., Int. J., 13(2), 123-132. https://doi.org/10.12989/acc.2022.13.2.123
  20. Su, D.Y., Pang, J.Y. and Huang, X.W. (2021), "Mechanical and dynamic properties of hybrid fiber reinforced fly-ash concrete", Hindawi Limited, 2021(20), 1-15. https://doi.org/10.1155/2021/3145936.
  21. Wang, D., Ju, Y., Shen, H. and Xu, L. (2019), "Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber", Constr. Build. Mater., 197, 464-473. https://doi.org/10.1016/j.conbuildmat.2018.11.181
  22. Wang, Y., Hu, S. and He, Z. (2021), "Mechanical and fracture properties of geopolymer concrete with basalt fiber using digital image correlation", Theor. Appl. Fract. Mech., 112(1), 102909. https://doi.org/10.1016/j.tafmec.2021.102909
  23. Xu, L. (2023), "Research on Mechanical Properties of Basalt Fiber Reinforced Magnesium Phosphate Cement Based Composite Materials", Master's Dissertation; Shenyang University of Technology, Shenyang, China.
  24. Yang, S.T., Li, L.Z. and Yu, M. (2021), "Preparation of alkali activated sea sand recycled aggregate concrete and determination of its tensile strength", Mater. Introd., 35(S2), 176-182.
  25. Zhang, J.S. and Zhao, Y.H. (2018), "Mechanical performance testing of basalt fiber ultra-high performance concrete", J. Shenyang Univ. Technol., 40(5), 595-600.
  26. Zhao, Y.R, Guo, Z.L, Fan, X.Q., Shi, J.N. and Wang, L. (2017), "Stress-strain relationship and pore structure analysis of basalt fiber reinforced concrete", Silicate Bull., 36(12), 4142-4150. https://doi.org/10.16552/j.cnki.issn1001-1625.2017.12.031.0