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Abstract 
The widespread use of Cloud Computing, Internet of Things (IoT), 
and social media in the Information Communication Technology 
(ICT) field has resulted in continuous and unavoidable cyber-
attacks on users and critical infrastructures worldwide. Traditional 
security measures such as firewalls and encryption systems are not 
effective in countering these sophisticated cyber-attacks. 
Therefore, Intrusion Detection and Prevention Systems (IDPS) are 
necessary to reduce the risk to an absolute minimum. Although 
IDPSs can detect various types of cyber-attacks with high 
accuracy, their performance is limited by a high false alarm rate. 
This study proposes a new technique called Fuzzy Logic - 
Objective Risk Analysis (FLORA) that can significantly reduce 
false positive alarm rates and maintain a high level of security 
against serious cyber-attacks. The FLORA model has a high fuzzy 
accuracy rate of 90.11% and can predict vulnerabilities with a high 
level of certainty. It also has a mechanism for monitoring and 
recording digital forensic evidence which can be used in legal 
prosecution proceedings in different jurisdictions. 
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1. Introduction 
 

Nowadays security, privacy, confidentiality, and 
safety of computerised data and information are major 
concerns in ICT systems in all sectors of our lives. 
Moreover, corporations, governments, public utilities, 
financial services, healthcare institutions, and private 
businesses store large volumes of data collected, processed, 
and stored on electronic devices, and communicated 
through various online services that are susceptible to 
cyber-attacks. For example, protecting patients’ public and 
private health information and supporting assets in a 
healthcare ICT facility from internal and external cyber-
attacks and other dangers involve high risk. Hence, 
deploying IDPS can prove an invaluable tool [1] that can 
detect suspicious threats and prevent further damage to 
protected systems [2], such threats diversify into new forms 
[3], including ransomware. 
 

With the increasing number of attacks and 
vulnerabilities and the inability of IDPS to detect innovative 
cyber-attacks that have no monikers or patterns yet [4], 
developers are encouraged to adopt new anomaly detection 
strategies and mechanisms to uncover abnormal patterns of 
behaviour by profiling them [5] [6]. Although these 
detection strategies are extremely powerful tools; however, 
a potential weakness in their mechanism can originate from 
the incidence of unacceptable high false alarm rates that can 
cause inadvertent system behaviour and unnecessarily high 
levels of processing. Moreover, the anomaly detection 
function may erroneously identify a non-intrusive 
legitimate normal action as an attack and falsely retort by 
unnecessarily exhausting system resources [6].  

 
This paper proposes a new approach for IDPS by 

designing and implementing a fuzzy logic risk management 
assessment and analysis technique to eliminate false alarm 
rates to an absolute minimum by devising FLORA (Fuzzy 
Logic – Objective Risk Analysis for Intrusion Detection), 
which measures the significance and the severity of each 
intrusion activity in a reliable manner. FLORA effectively 
establishes whether an activity is a genuine cyber-attack or 
a non-attack behaviour pattern, as well as provides an 
intrusion prevention strategy.  

 
The paper consists of the following sections: Section 2 

presents related works within the scope of the FLORA 
detection system. Section 3 outlines the limitations in 
existing IDPSs that FLORA attempts to overcome. Section 
4 presents the proposed FLORA framework functional 
architectural model. Section 5 discusses the security risk 
management problem and solutions to overcome some of 
the limitations in existing IDPSs by deploying the FLORA 
system. Section 6 presents the procedures and experimental 
results pertaining to the FLORA system calculating the 
vulnerabilities and countermeasures against cyber-attacks 
with reasonable and manageable alarm rate ranges. Section 
7 covers a discussion, challenges, and recommendations 
arising from this research work, and lastly, Section 8 
provides a conclusion of the proposed FLORA system, and 
provides an indication of future work. 
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2. Related Works 
 

For more than four decades IDPS has been an active 
field of research and development with varying degrees of 
success. This section succinctly presents some of the latest 
related works on the reduction of false alarm rates and the 
relevant soft computing topics in IDPS.  
 

A two-stage classification system using Self-Organizing 
Map (SOM) with a neural network and a k-means algorithm 
to link the related alerts with the proviso to further classify 
the alerts into true and false alarm categories was developed 
by [6]. Initial results from the experiments showed that the 
approach reduced unwarranted and unnecessary false alarm 
alerts by more than fifty percent. The authors of [8] went a 
step further by using a datamining technique to categorise 
the input alarm data and fed it into the Growing Hierarchical 
Self-Organized Map (GHSOM) model to adjust its IDPS 
architectural system during an unsupervised training 
process. This datamining technique clusters the alarm data 
into a compressed form that supports network support staff 
in ultimately taking the final decisions regarding the true 
and false nature of alarms.  

 
A post-processing filtering method was proposed by [9] 

to reduce false positives based on the statistical properties 
of intrusion alerts categorised into three classes according 
to varying degrees of alarm severity. Special features of the 
alerts corresponding to true attacks were exploited to 
prevent unwanted known alarms to be discarded. Their 
filtering method limited false positives by a maximum of 
seventy-five percent to achieve some sort of optimality but 
was computationally expensive.  

 
The authors of [10] proposed a “New Intrusion Detection 

Method Based on Antibody Concentration (NIDMBAC)”  
that intended to reduce false alarm rates without affecting 
the detection rates by employing a process of clone 
proliferation and defining four categories of intrusions as 
self, non-self, antigen, and detector, using a probabilistic 
calculation method. The theoretical and systematic analysis 
of the experimental results showed that their method 
performed much better than other comparable traditional 
methods but found little use in practical IDPSs.  

 
 An intrusion detection strategy was proposed by [11] 

which involved a hybrid statistical approach that used 
optimised datamining and decision tree classification 
techniques. The results from the statistical analysis process 
were adjusted to differentiate between actual attacks of the 
traffic data and false positives in order to reduce the 
misclassification of false positives. This adjustment feature 
had some problems to build an effectively correct detection 
system.  

 
The authors of [12] investigated and reviewed several 

security risk assessment methodologies to identify 
vulnerabilities in cyber-critical infrastructure systems. They 
also found other security techniques that received less 
attention when analysing the security threat risks as a 
comprehensive one-stop policy. Their analysis advocated 
that combining a set of soft computing techniques would be 
a way forward to build smart IDPSs.  

 
FLORA took the lead and challenges a step further by 

amalgamating artificial intelligence, datamining 
optimization, reinforcement learning, knowledge-based 
systems, and fuzzy logic for objective risk assessment and 
analysis of intrusions in a superior manner to combat 
unwanted anomaly cyber-attacks and false positive alarms 
to build credible IDPSs.   
 
3.  Limitations of Current IDPS Systems 

A common weakness of IDPSs is their inability to 
accurately detect attacks due to their lack of risk analysis 
and assessment methods [13] and not having access to a 
comprehensive list of all known and unknown attacks at any 
one time. On the contrary, when an IDPS wrongly identifies 
an intrusion as threatening, a false positive occurs. 
Furthermore, when an IDPS fails to genuinely identify a 
malicious activity, it causes a false negative. These 
conflicting situations are also very challenging to solve, 
while culprit attackers are always steps ahead of new 
countermeasures. 

     An Intrusion Prevention System (IPS) is different from 
IDS in one respect, whereby an IPS responds to an attack 
from taking place provided the attack type is known [13-17]. 
An automated IPS either updates its tables dynamically with 
new attack types or while neutralising the attack changes 
the content of the attack to track its evolution like a botnet 
would typically do, or alerts the security environment 
manager to contain it via applying appropriate 
countermeasures. Moreover, the IPS could go a step further 
to change the configuration settings of the security controls 
to extricate an attack by reconfiguring a device/component, 
blocking the attacker’s access to system resources, 
quarantining the attack for further analysis, or disabling the 
target under attack, or changing the firewall settings to 
block incoming attacks [1]. Some IPSs can either eradicate 
an attack or substitute it with an appropriate countermeasure 
to render them ineffective [13], but this, if not properly 
designed could result being an error-prone exercise. 

     With high false alarm rates of anomaly detection, IPSs 
can inadvertently identify a legitimate, non-intrusive 
activity as a cyber-attack, respond inaccurately to it, and 
unnecessarily exhaust system resources. The main 
limitation of anomaly systems is the inability to detect an 
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attack accurately, thus unnecessarily generating high rates 

of false alarms. For example, a component’s valid operation 
behaviour may be construed as an abnormal pattern. While 
normal component behaviour can easily and rapidly change 
on the fly, when anomaly-based IDPSs go out of sync with 
the normal, they are susceptible to generating false positives. 
Such cyber-attacks may be recorded based on changes to 

the “normal”  pattern behaviour rather than representing 

“actual” attacks.    
 
3.1 Overcoming limitations of current systems  

It is imperative to apply formal risk assessment techniques to 
analyse all detected cyber intrusion activities by measuring 
their exposure and impact factors and assist in validating the 
alert and reducing false alarms to an absolute minimum and 
allowing an acceptable level of ICT operation. The main 
problem with false alarms is their level of complexity, which 
is due to the complexities of dynamically reconfigurable ICT 
systems and poorly designed IDPSs and their deployment in 
such ICT ecosystems [6].  

According to [17], the most optimum option is to incorporate 
a Collaborative-IDPS (CIDPS) with soft computing and self-
managing functional components to overcome IDPS 
complexities. The CIDPS framework architectural model, 
data and information management flow to and from the 
CIDPS intermediate layer, traversing through various multi-
agent components, such as the fuzzy risk manager function, 
the knowledge and multi-agent manager, and the autonomic 
manager are illustrated in Figure 1. The main goal of the 
fuzzy risk manager function is to control unnecessarily 
triggered false positive alarms, whereas the autonomic and 
knowledge manager agents respond to intrusions in the host 
computers and network device elements, and provide 
appropriate feeds to other components to ultimately offer 

countermeasure operations. The autonomic manager’s main 
function is to monitor and enable the IDPS to automatically 
and seamlessly detect changes in hardware and software. 
This form of CIDPS gelling as a multi-agent federated 
cooperative intrusion detection and prevention system using 
computational intelligent techniques overcomes many 
deficiencies found in non-collaborative IDPS as 
corroborated by [3]. 

3.2 CIDPS framework architecture   

The autonomic trust manager in CIDPS consists of four 
interlinked agents. The checker agent monitors the 
conditions of system resources by referring to the ontology 
to detect anomalous activities. Should any unexpected 

change be detected, the ontology is automatically updated 
with the new information and also sent to the analyser agent 
that evaluates the complex behaviour pattern to 
comprehend the current state of the system, and set the 
markers to predict future abnormalities. In addition, the 
checker agent uses the risk analysis estimation facility to 
decide on the most appropriate action to be taken by 
consulting the Knowledge Base (KB) and verifying the 
correctness of the analysis before executing the final set of 
procedures. The checker agent then updates the KB for 
subsequent use. The planner agent is responsible for 
structuring the actions required to achieve the desired goal 
by producing a string of commands to invoke the threatened 
components and elements. The executor agent receives 
commands and executes the healing functions and updates 
the IDPS policies. This set of four interlinked agents, with 
the help of computational intelligence using machine 
learning classifiers and inference engine are supported by 
the following four essential properties of “self-automated” 
autonomic computing: 
 

1) Configuration: provides the rules for system 
components to execute at runtime. 

2) Healing: operates cyclically from detecting 
abnormalities until the problem is verifiably resolved. 

3) Optimization: allows for the optimising the affected 
resources without impacting other resources. 

4) Protection: detects non-compliant functional activities 
and updates security and risk policies hosted in the KB 
to avoid the recurrence of defects and intrusions. 

  
3.3 FLORA operational within CPIDS 

Referring to Figure 1, when an intrusion is detected, the 
vulnerability scanner agent inspects the impacted 
components within the affected system by probing deeper 
into the vulnerability. The vulnerability assessment data is 
then analysed in conjunction with network behavioural data. 
In real-time the scanner agent establishes a map of the attack 
and assesses the possible consequences of the impact upon 
the target system. The applicable target system centred 
ontology is opened where the high-level concepts such as 
cyber-attacks, masquerades, liabilities, and incidents are 
stored, and a rating is assigned to the affected asset by the 
risk calculator looking up the risk profiler KB, and the 
intrusion prevention solution gets to work by taking 
proactive deterring actions to contain or discard the intrusion, 
ensure correct system operation, and reduce overall 
operational overheads to a minimum. For example, intrusion 
prevention rules which do not apply to certain components, 
systems, and applications in a specific Internet Protocol (IP) 
address range can be immediately disabled but noted. This 
approach significantly reduces false positives in future 
incidents of a similar nature, especially in high-traffic 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

182

 

network environments. However, these rules may be re-
enabled at any time if new intrusion data certifies that a 
particular component, system, or application has become 
susceptible to a known attack to ensure system optimization 
and operational efficiency.  

 

Figure 1  : Boosted collaborative IDPS functional framework 
architecture with soft computing components 

To comprehensively evaluate the false alarm reduction 
strategy, it is essential to quantify the actual exposed risk 
factor of the asset under attack and any other associated 
residual risk, which is what FLORA does within the CIDPS 
framework architecture, incorporating four critical multi-
agents functionalities:  

1) Fuzzy reinforcement learning manager; 
2) Knowledge manager with risk profiling abilities; 
3) Computational intelligence manager using AI and 

ML artefacts; and  
4) Autonomic trust manager.  

 
These four management functions are embedded within the 
trust manager to deploy, test, and evaluate CIDPS’s 
efficiency in the host and communication networks. The 
risk analysis and risk assessment processes become more 
apparent when using fuzzy logic applications. The CIDPS 
functional framework risk analysis provides a 
comprehensive and efficient categorization of the multiple 
risk factors. The framework ensures that complex variables 
are painstakingly correlated when making risk analyses and 
assessments before CIDPS takes the final set of actions [17].  

 

 

 

 

4. Proposed FLORA Strategy Model   

The FLORA concept and principles are unique by 
taking IDPS one stage further in creating added value. It 
enhances IDPS to be more complete in its functionality and 
operation. 

 
The research proposes a strategy to decrease the false 

alarm rates in IDPSs by implementing the FLORA model 
that calculates the significance and the threshold impact 
severity of each encountered alleged activity. FLORA can 
determine more accurately whether an activity or object is 
categorised as an intrusion attempt or normal operational 
behaviour misjudged by the detection procedure. FLORA 
model is organized into five layers, constructed from Level 
0 to Level 4 as shown in Figure 2 with the following IDPS 
functionality attributes: 

 
Level 0: It is responsible for journalising all the configured 
physical and virtual ICT computing resources, 
communication and transmission network devices and 
elements, monitoring components, IDPS sensors and 
actuators accessed by the Level 1 resource manager. 
 
Level 1: It represents the resource manager’s functions that 
manage traffic collectors and action modules, as defined by 
the topology and IDPS configuration tables. The traffic 
collectors are responsible for collecting the data and pieces 
of evidence of an intrusion such as network packets, log 
files, system call traces, etc. from all software and hardware 
resources and forwarding the information to Level 2.  
 
Level 2: It is the “heart” of the fuzzy logic and objective 
risk analysis IDPS system. It is responsible for all the 
activities pertaining to attack detection performed by the 
FLORA Intrusion Detection Manager (IDA) shown in 
Figure 3. It consists of the following software modules: 
 
 The monitor module receives input from traffic 

collectors in the network devices and hosts 
computers. It is responsible for collecting, analysing, 
and monitoring the data for intrusions, malicious 
activities, and security policy violations while 
providing the first line of defence by alerting against 
such abnormal events in real-time on monitor 
screens. 

 
 The analyser module can ideally be configured by a 

human administrator or sophisticated automation, 
mimicking the administrator functions from several 
templates that define safety measures and IDPS 
high-level goals. The module uses monitored data 
and the internal knowledge hosted in the knowledge 
base as inputs to analyse the suspicious traffic 
detected by the monitor module and either confirms 
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or rejects the outcome of the generated alerts. The 
analyser module also performs alarm categorization 
and correlation of attacks or events against a set of 
rules that defines possible countermeasures to 
prevent further unnecessary alarm alerts against 
known attacks, temporary quarantining, and possible 
unknown intrusions for later analysis and processing, 
which might further require either updating of 
existing countermeasure rules or introducing new 
rules. The analyser model is responsible for 
calculating and estimating the risk of intrusions 
using fuzzy logic and predefined high-level criteria 
goals from policies, rules, standards, guidelines, and 
operational data, etc. Most importantly, it confirms 
the validity of the alerts and identifies false positive 
alarm alerts by measuring the risks caused by the 
threat. Figure 4 shows the general internal process 
functions of the fuzzy logic system. 

 
 The planner module supplies the procedures and 

script to plan execution actions for the affected 
element based on the risk severity analysis observed 
by the analyser module. For example, the 
requirement to enact a change may occur when the 
analyser module determines that some policy 
violation has taken place. 

 
 The controller module provides the mechanism to 

schedule for the action module to perform the 
necessary changes to the affected elements 
determined by the planner module by verifying the 
changes through a series of actions and 
simultaneously populating the knowledge base with 
such updated information.  

 The action module executes the scheduled changes 
to the affected component, device, or element based 
on the following: norms: 

 
 Coarse-grained, e.g., adding or removing virtual 

servers or to and from a web server cluster in a 
cloud. 

 Fine-grained, e.g., modifying the IDPS 
configuration parameters in a network device or 
web server in a cloud. 

 
The data and information collected by the traffic collectors 
allow the CIDPS to monitor all of the dynamic behaviour of 
the elements and components to be protected, and execute 
changes similarly in a real-time dynamic manner. 
 
Level 3: It consists of all the safety measures like security, 
identity management, trust management, privacy, and, 
digital forensics audit as well as the essential related data 
and information that are kept in the knowledge database. 
The acquired experiences of previous actions and events, 

intuitive pre- and post-IDPS activities, and actual or 
predictive learning machine learning outputs are also stored 
in the knowledge database. It is the repository and source of 
all knowledge about every possible detail that IDPS 
incorporating risk analysis and assessment have access for 
decision-making to minimize the false positive alarms, and 
to maximize the IDPS operations. The Interaction with the 
knowledge base is through the knowledge management 
process, which gives a single point of access via the 
integrated interface layer.  
 
Level 4: It is the integrated CIDPS interface layer for 
FLORA, which is the penultimate contact point between the 
IDPS system administrator. It is a “window” to all the 
system components and modules. At this level, the 
administrator defines the security-related strategies, policies, 
rules, and operational instructions through scripting or 
software programs. This function is largely automated with 
the aid of autonomic computing, data analytics, and machine 
learning tools but allows for human intervention as and when 
necessary. 

 

Access to IDPS sensors and actuators of computing resources, 
devices and network elements

Monitor all ICT system resources of any 
existence of intrusion or attack incidents 
and convey countermeasures to actuators

Central Monitor, analyser, planner
And controller of incoming alerts 

via consultation of the knowledge base 
to exercise risk analyses and assessment 

Access to knowledge 
base containing all IDPS 
and risk related data, 
information, including 

information of assets and 
their configuration

 Administrator
access to FLORA 

via CIPDS for safety 
& security functions

 
Figure 2: Proposed FLORA information and processes 
management strategy model 
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Figure 3: Fuzzy Logic - Objective risk analysis IDPS architectural 
system components 

 
Figure 4: The input-output (result) fuzzy logic module’s 

processing flow structure 

5. Security Risk Management 

Risk management entails a systematic approach to 
analysing and assessing security risks [18]. It requires 
determining important resources to be secured, determining 
credible threats from numerous adversaries, assessing 
vulnerabilities and dangers, and analysing the adequacy of 
countermeasures. To suitably analyse false alarms, it is 
necessary to quantify the risk exposure of the threatened 
asset and the residual risk borne by the asset [14]. This false 
alarm reduction tactic requires risk identification and risk 
assessment prescribed processes to implement a robust risk 
management system. 

5.1 Risk Identification 

    Risk identification commences with the process of self-
examination to correctly identify assets under attack and 
categorised them into prioritised groups according to their 
overall level of importance. In particular, this process 

identifies the weaknesses and threats each asset group 
exhibits. The risk identification process is involved in the 
following several activities: 
 
Creating an inventory of assets, classifying and organising 
those assets into meaningful groups such as information and 
data assets, people, processes, software, hardware, and 
network elements. This inventory reflects the sensitivity 
and security priority weight assigned to each asset. The 
weights reflect the relative significance of the attributes, 
while attribute scores are expressed in percentage terms and 
ratings ranging from a low of 0.1 to a high of 1.0, reflecting 
the policy proclamation and the assigned judgmental-based 
estimation value as shown in Table 1. Calculating the asset 
value simply involves multiplying each score by the weight 
of the relevant attribute, and the scores are totalled to derive 
an aggregate weighted score for each asset class.  
 
Any threat to any catalogued asset is defined as the potential 
to cause harm that needs to be contained or eliminated. 
Relative weighed values and score ratings are assigned to 
threats according to their severity in terms of significance, 
outcomes, and frequency of attacks as shown in Table 2, 
which is in some ways similar to Table 1.  It is impossible 
to accurately know everything about every threat and its 
impact on a novel or newly injected cloned attack on an 
initial encounter, but the frequency of such attacks over a 
period of type will evolve to provide more accurate 
detection. This function factors uncertainty to be added into 
the evaluation of the exposed risk for each threat as would 
be the case in efficiently detecting malicious malware and 
inadvertent human operating errors, but lacks the ability to 
detect deliberate acts of espionage that can take different 
disguised forms without realizing its intent. The uncertainty 
percentage in the FLORA-modelled system is estimated by 
the judgment of experienced security experts in formulating 
the risk analysis and assessment policy. 
 
Once vulnerable assets are ascribed to specific threats upon 
identification, all that needs to be added are the necessary 
controls to obviate attacks as a safety measure by assigning 
an estimated percentage value to mitigate that risk. This 
likelihood of an attack is the overall rating of the probability 
that a specific vulnerability on the next encounter will be 
exploited as perceived and shown in Table 3. As an example, 
the likelihood of a system being physically accessed within 
an indoor isolated secured environment would be rated 0.1, 
while the likelihood of receiving malware in an e-mail 
during a week would be rated 1.0.  
 
Defining the magnitudes of a threat attacking vulnerable 
assets are evaluated on five levels ranging from insignificant 
to catastrophic as shown in Table 4. For instance, the 
magnitude of a web server being attacked by system-aware 

Expert 
Knowledge 

Fuzzification Defuzzification Membership 
Modification 

Fuzzy logic 
Fuzzy set theory 

I O 
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ransomware would be rated 0.1, while the magnitude of a 
network being attacked by a DDoS would be rated 1.0.  

 

Table 1: Score ratings for information data asset attributes 

ASSET 
SENSITIVITY 

DATA 
CONFIDENTIALITY

VIABILITY 
IMPACT   

SCORE 
RATING

Critical Classified Critical 1.0   to 
0.91 

Very High Confidential Very High 0.90 to 
0.71 

High Private High 0.70 to 
0.41 

Medium Public Medium 0.40 to 
0.21 

Low Open Low 0.20 to 
0.10 

 

Table 2: Score ratings for security threat attributes 

THREAT 
SIGNIFICANCE 

THREAT 
OUTCOMES 

ATTACK 
FREQUENCY  

SCORE 
RATING 

Critical Critical Almost 1.0   to 0.91
Very High Very High Likely 0.90 to 0.71

High High Possible 0.70 to 0.41
Medium Medium Unlikely 0.40 to 0.21

Low Low Rare 0.20 to 0.10

 

Table 3: Possible levels for information and data asset security 

threats 

LIKELIHOOD LEVEL DESCRIPTION 

1.0 to 0.91 Almost 
certainly 

Is expected to occur in most cases 

0.90 to 0.71 Likely This will probably occur in most 
cases 

0.70 to 0.41 Possible This may occur at some point in time
0.40 to 0.21 Unlikely This may occur at some point in time
0.20 to 0.10 Rare This may occur only in exceptional 

cases 
 

Table 4: Magnitudes levels for information and data asset threats 

MAGNITUDES LEVEL DESCRIPTION 

1.0   to 0.91 Cataclysmic Fatality, sabotage or natural 
disasters 

0.90 to 0.71 Major Sabotage, extensive 
damages, or major asset 

losses. 
0.70 to 0.41 Moderate Extensive damage or high 

pecuniary losses. 
0.40 to 0.21 Minor Remediable or medium 

pecuniary losses. 
0.20 to 0.10 Insignificant No damages or low 

pecuniary losses. 

 
5.2 Risk Assessment 
 
    Risk assessment evaluates the level of proportional risk 
of each asset’s threat and vulnerability [19] and FLORA 
assigns risk ratings to quantify the risk exposure of the asset 
and its residual risk expressed by that asset, which enables 
the IDPS to measure the concomitant risk. The two new 

types of risk are “leftover risk (LR)” and “inherent risk 
(IR)”. Leftover risk is created by the asset to itself as a 
factor of its vulnerabilities and controls, and its composite 
value to the enterprise. It is the risk persisting after efforts 
have been exhausted to reduce the IR to its present state 
without any further actions at mitigation and no controlling 
measures to reduce the risk from the initial levels of 
encounter to calculable levels acceptable to the enterprise 
system. The difference between LR and IR is an important 
distinction.  
 
The leftover risk is calculated for each asset based on its 
sensitivity, the confidentiality of the data it holds, its impact 
on the business – e.g. availability or profitability, and its 
likelihood of vulnerabilities defined by Equation (1), where 
𝐿𝑎 is the leftover risk of 𝑎th asset, 𝜌 the probability of 
vulnerability occurrence, 𝐸𝑎 effective impact value of 𝑎th 
asset, and 𝜙 the percentage of the current risk control. 
 

𝐿௔ ൌ  𝜌 ∗  𝐸௔ െ 𝜑                  (1) 
 
 
The inherent risk factor is calculated when a threatened 
asset of significance with recurring frequency of cyber-
attack occurs as defined by Equation (2), where 𝐼𝑇 is the 
inherent risk of 𝑎th asset, 𝐸𝑇 the effective impact value of 
𝑇th threat, 𝑤𝑇 the weighted value of 𝑇th threat, and 𝜎 the 
uncertainty of current vulnerability. 
 
 

𝐼் ൌ  𝐸் ∗  𝑤் െ 𝜎                     (2) 
 
5.3 Risk control countermeasure  
 

 When the leftover and the inherent risks are blended 
using fuzzy logic, the IDPS is in a position to decide which 
countermeasure to apply to an identified cyber-attack. 
There are three control countermeasures that are defined to 
apply to the attack: 
 

    –  Avoidance (Av). Apply a countermeasure to 
prevent or reduce the magnitude of the attack. This 
countermeasure is implemented by applying a prevention 
mechanism, such as terminating the network connection or 
user session that is being attacked, or by either preventing 
the offending attacker from gaining access from a user’s 
account or simply blocking access to the targeted service, 
application, host or other associated resources. 

– Transference (Tr). Shift the risk to other areas or 
outside entities. One example of transferring the risk is 
using a botnet-related honeypot to track deeply into attacks 
for further investigation. (Since this is outside the scope of 
this reported research, it would be most useful when 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

186

 

designing and implementing a digital forensics 
investigation module to catch the culprit for prosecution.) 

– Acceptance (Ac). Comprehending the magnitude and 
acknowledging the risk without any attempt to mitigate the 
risk because of its insignificance. 

6. Analysis & deployment of FLORA model    

The FLORA model consists of fuzzy logic semantic 
variables and expressions for input and output risk 
parameters used in the experiment. Five Membership 
Functions (MF/MFs) are used for each input variable as low, 
medium, high, very high, and critical, and three MFs for 
each output countermeasure variable as Avoidance, 
Transference, and Acceptance. LR conveyed by an asset 
and IR generated by an attack are the vital two input 
parameters that result after calculation as the 
countermeasure output parameter. Table 5 shows the 
characteristics of the input and output variables and the min-
max range of values and Table 6 shows the score rating 
ranges of LR and IR divided into five classes of fuzzy sets 
from Critical to Low with in-between Very High, High, and 
Medium.  
 
6.1 Membership I/O functions for FLORA model  
 
    According to [6], the type of MFs for fuzzification is 
mainly dependent upon the relevant event for the best 
addressing of the problem. In the fuzzy logic model, the 

“Trapezoidal-shaped Gaussian MF” is adopted to express 
the fuzzy sets for the input and output variables. The input 
variables are partitioned according to the experimental 
parameter ranges. The degree of belonging of the values of 
the input variables to any selected class is called the degree 
of membership as shown in Figure 5 for the leftover risk 
and inherent risks. 
 
The output MF is the countermeasure variable characterised 
in the fuzzy sets into classes as shown in Figure 6 for 
qualitative risk: 
 
 Avoidance signifies a high-risk exposure requiring 

some action to purge that threat.  
 Acceptance signifies low-risk exposure requiring no 

action for that threat.  
 
Transference signifies expert judgemental intervention is 
needed to take remedial action.  
 
The trapezoidal area for both Figures 5 and Figure 6 is a 
function of a vector, x, and four scalar parameters 𝑎, 𝑏, 𝑐, 
and 𝑑, as defined by Equation (3): 
 

𝑓ሺ𝑥; 𝑎, 𝑏, 𝑐, 𝑑ሻ ൌ 𝑚𝑎𝑥 ቀ𝑚𝑖𝑛 ቀ௫ି௔

௕ି௔
, 1, ௗି௫

ௗି௖
ቁ , 0ቁ  (3) 

 

Table 5: Fuzzy linguistic definitions and ranges of variables for each 

parameter 

         INPUTS  

PARAMETERS LINGUISTIC VARIABLES 
RANG

E 
Leftover risk 

(LR) Low, Medium, High, Very 
High, Critical 

 

0-100 
Inherent risk 

(IR) 0-100 

OUTPUTS 

Countermeasure 
Avoidance, Transference, 

Acceptance 0-100 

 

Table 6: Score ratings for fuzzy logic leftover and inherent risks 

LEFTOVER RISK 
(LR) 

INHERENT RISK 
(IR) 

SCORE 
RATING 

Critical Critical 91 to 100 
Very High Very High 71 to 90 

High High 41 to 70 
Medium Medium 11 to 40 

Low Low 0 to 10 
 

 
Figure 5: Inputs membership functions for leftover and inherent risks 

 

 
Figure 6: Output membership functions for qualitative risk 

 

Scalar parameters 𝑎 and 𝑑 locate the “feet” and 𝑏 and 
𝑐locate the “shoulders” of the trapezoid. It is stated by [1] 
that expert knowledge is required to characterise the inputs 
and outputs and to link them by a set of “inference rules” 
using “if-then” statements to obtain optimum outcomes. 
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According to this principle, from the number of fuzzy sets 
of inputs, there are twenty-five possible combinations of 
inference rules in the FLORA system. The fuzzy output set 
indicates the applicable countermeasure that should be 
applied to a cyber-attack. 
 
6.2 Fuzzy rule sets 
 

The type of response of the IDPS is based on the 
calculated leftover and inherent risk factors. For example, 
in the case of leftover and inherent risk determined to be 
very high, the appropriate action is to apply safeguards as 
preventative measures to either eliminate or reduce the 
magnitudes of the cyber-attack. In the case of low risk, the 
appropriate action is to understand the outcome as harmless 
having no consequences, and accept the risk as shown in 
Table 7. This method and analysis reduce the false alarm 
rate in the anomaly detection module and make the system 
more robust and reliable.  

 
It can also be observed from the matrix in Table 8 that 

the upper and lower triangular parts are equivalent leading 
to the same results. For instance, the one intersection 
between LR-VERY HIGH with IR-HIGH leads to 
Transference, and the other intersection between IR-VERY 
HIGH with LR-HIGH leads to Transference, both 
intersection actions occurring at the same time. A set of 15 
fuzzy rules for FLORA was constructed based on the 
characteristics of the input and output variables quantities 
shown in Table 6 and from the matrix of the actual 
qualitative risk analysis derived from Table 7.  
 
Table 7: Qualitative risk matrix derived from quantitative LR & IR data 

TYPES OF  
RISKS 

INHERENT RISK (IR) 

CRITICAL VERY HIGH HIGH MEDIUM LOW 

L
E

F
T

O
V

E
R

 R
IS

K
 (

L
R

) 

 CRITICAL  Avoidance  Avoidance  Avoidance  Transference  Transference

 VERY HIGH  Avoidance  Avoidance  Transference  Transference  Transference

 HIGH  Avoidance  Transference  Transference  Transference  Transference

 MEDIUM  Transference  Transference  Transference  Transference  Acceptance 

 LOW  Transference  Transference  Transference  Acceptance  Acceptance 

  
The program execution logic of the qqualitative risk 
analysis matrix derived from quantitative LR & IR data to 
formulate countermeasures is as: 
 

Rule # 1: if (LR is Critical) and (IR is Critical) then 
(Avoidance) 

Rule # 2: if (LR is Critical) and (IR Very High) or (IR 
Critical) and (LR Very High) then 
(Avoidance) 

Rule # 3: if (LR is Critical) and (IR is High) or (IR is 
Critical) and (LR is High) then (Avoidance) 

Rule # 4: if (LR is Critical) and (IR is Medium) or (IR 
is Critical) and (LR is Medium) then 
(Transference) 

Rule # 5: if (LR is Critical) and (IR is Low) or (IR is 
Critical) and (LR is Low) then 
(Transference) 

Rule # 6: if (LR is Very High) and (IR is Very High) 
or (IR is Very High) and (LR is Very High) 
then (Avoidance) 

Rule # 7: if (LR is Very High) and (IR is High) or (IR 
is Very High) and (LR is High) then 
(Transference) 

Rule # 8: if (LR is Very High) and (IR is Medium) or 
(IR is Very High) and (LR is Medium) then 
(Transference) 

Rule # 9: if (LR is Very High) and (IR is Low) or (LR 
is Very High) and (IR is Low) then 
(Transference) 

Rule # 10: if (LR is High) and (IR is High) then 
(Transference) 

Rule # 11: if (LR is High) and (IR is Medium) or (IR 
is High) and (LR is Medium) then 
(Transference) 

Rule # 12: if (LR is High) and (IR is Low) or (IR is 
High) and (LR is Low) then (Transference) 

Rule # 13: if (LR is Medium) and (IR is Medium) then 
(Transference) 

Rule # 14: if (LR is Medium) and (IR is Low) or (IR is 
Medium) and (LR is Low) then 
(Acceptance) 

Rule # 15: if (LR is Low) and (ER is Low) or (IR is 
Low) and (LR is Low) then (Acceptance) 

6.3 Fuzzification and Defuzzification 

Fuzzification is basically the process of transforming a 
crisp set of input values accurately into aggregated semantic 
variable values into either a fuzzy set or a fuzzy set to a 
fuzzier set. Defuzzification is the process of obtaining a 
single value from the output of the aggregated fuzzy set 
used to transfer fuzzy inference results into a crisp output 
based on a decision-making algorithm that selects the best 
crisp value based on a fuzzy set. In short: defuzzification is 
the conversion of an input fuzzy logic aggregated quantity 
to a precise value, and fuzzification is the conversion of an 
input value to a fuzzy logic quantity [6]. FLORA using 
these processes, by considering the union of the output of 
each rule, the resultant MFs are developed whereby the 
overlapping areas of the fuzzy logic output set are counted 
as one providing more and better results. From one of many 
experiments, Figure 7 illustrates an example of the 
appropriate ascent between the input parameter changes and 
the countermeasure values, which are predicted by FLORA. 
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The close ascent of the countermeasure values shows that 
the FLORA model can more accurately predict 
countermeasure values of cyber-attacks. The FLORA 
model gives a very promising solution to predict 
countermeasure values in a specific range of parameters 
compared to similar work reported in [11].  

 
Additionally, after performing the defuzzification, the 

correlation matrix is computed as shown in Table 8. 
Standard statistical analysis is used to complement the 
fuzzy logic system to better determine the active attributes 
of each class since some attributes in semantic terms can be 
expressed to discover more production rules for better 
accuracy. These rules describing the classes allow FLORA 
to perform speedily to counteract the cyber-attack threats 
much more effectively and efficiently.  

 
After classification has been performed through 

FLORA, each class of the patterns acquired is inspected. 
There are several methods of inspection. The easiest method 
is to use the statistical analysis of each class. Using central 
tendency and dispersion statistical measures, one can form 
several rules that govern each class attribute. There are 
several ways to measure the variability of the data. In this 
research, the concept and the technique of “measures of 
dispersion” using “standard deviation” were used, since 
it provides an average distance for each value from the 
mean, giving a range difference between the highest and 
lowest data values spectrum [15]. Metaphorically, the range 
is computed as 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, although this is very similar 
to the formula for midrange. Although this is not an 
altogether reliable measure of dispersion, since it uses only 
two values from the dataset. The extreme values on either 
side of the spectrum can distort the range to be very large 
while most of the values may be very close to each other. 
For example, the range of this set of data 1, 1, 2, 4, 7, is 
therefore, 7-1=6, where 1 is the lowest value and 7 is the 
highest value. The statistical spectrum range is defined as 
the same as its mathematical construct. Thus, instead of 
being a single number, it is the interval over the spectrum 
of the data which occurs in the range of {𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥} or 
𝑥𝑚𝑖𝑛 to 𝑥𝑚𝑎𝑥. Thus, in the example above, the range is 1 
to 7 or {1, 7}. This strategy has been used in FLORA. An 
example of this scheme consisting of thirteen rules in 
pseudo-programming algorithmic logic for 100 samples, 
and ten inputs (i.e., 5 features a piece for LR and 5 IR 
respectively) to satisfy one of the main conditions of 
accuracy that satisfy 100% of sampled cases for 
countermeasures as: 

 
Rule # 1: if IR Very High in [86.173, 87.212] and LR Critical in 

[91.123, 98.704] and IR High in [41.3, 67.624] then 
Transference. 

Rule # 2:  if LR Low in [7.955, 8.611] and LR Critical in 
[98.704, 99.915] and IR Very High in [71.414, 

87.212] and IR High in [41.3, 67.624] then 
Avoidance. 

Rule # 3:  if LR High in [47.424, 58.355] and LR Low in 
[8.611, 9.186] and LR Critical in [98.704, 99.915] 
and IR Very High in [71.414, 87.212] and IR High 
in [41.3, 67.624] then Acceptance. 

Rule # 4:  if LR High in [58.355, 69.285] and LR Low in 
[8.611, 9.186] and LR Critical in [98.704, 99.915] 
and IR Very High in [71.414, 87.212] and IR High 
in [41.3, 67.624] then Transference. 

Rule # 5:  if LR Low in [6.778, 9.762] and IR Very High in 
[87.212, 89.855] and IR High in [41.3, 67.624] then 
Acceptance. 

Rule # 6:  if IR Low in [1.448, 7.651] and LR Low in [0.033, 
6.778] and IR Very High in [87.212, 89.855] and IR 
High in [41.3, 67.624] then Avoidance. 

Rule # 7:  if LR High in [52.354, 58.22] and IR Low in [7.651, 
9.179] and LR Low in [0.033, 6.778] and IR Very 
High in [87.212, 89.855] and IR High in [41.3, 
67.624] then Avoidance. 

Rule # 8:  if LR High in [58.22, 60.819] and IR Low in [7.651, 
9.179] and LR Low in [0.033, 6.778] and IR Very 
High in [87.212, 89.855] and IR High in [41.3, 
67.624] then Acceptance. 

Rule # 9:  if LR Low in [0.861, 9.198] and IR Critical in 
[91.718, 98.217] and IR High in [67.624, 69.901] 
then Transference. 

Rule # 10:  if LR Very High in [76.721, 79.65] and LR Low in 
[9.198, 9.581] and IR Critical in [91.718, 98.217] 
and IR High in [67.624, 69.901] then Transference.  

Rule # 11:  if LR Very High in [79.65, 82.58] and LR Low in 
[9.198, 9.581] and IR Critical in [91.718, 98.217] 
and IR High in [67.624, 69.901] then Acceptance. 

Rule # 12:  if LR Low in [3.089, 6.221] and IR Critical in 
[98.217, 98.653] and IR High in [67.624, 69.901] 
then Avoidance. 

Rule # 13:  if LR Low in [6.221, 9.353] and IR Critical in 
[98.217, 98.653] and IR High in [67.624, 69.901] 
then Transference. 

 

 

Figure 7: Countermeasure value in relation to change of leftover 
risk and inherent risk factors 
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Figure 8: Final analysis of the resulting decision of the 

FLORA system depicted in a surface form 

6.4 Results of the Fuzzy Logic Model 

After constructing the fuzzy logic programmable rules, 
five experimental tests were performed in separate 
experiments, while the proposed fuzzy logic model was 
used to identify the abnormality of the system under the 
same conditions as shown in Table 9, which is to investigate 
the fuzzy logic model accuracy and error factors. The error 
factor is calculated to measure the gap between the 
predicted and measured values. The individual error 
percentage is calculated by taking the absolute difference 
between the predicted and measured values and dividing it 
by the measured value as given in Equation (4): 
 

𝑒௜ ൌ ቀ
ห஺೘ି஺೛ห

஺೘
ቁ ∗ 100%        (4) 

 
 

Where ei is the individual error, Am is the measured value 
and Ap is the predicted value.  
 
Meanwhile, accuracy is calculated to measure the 
closeness of the predicted value to the measured value. 
The model accuracy is the average of individual accuracies 
as shown in equation (5), where a is the model accuracy 
and N is the total number of datasets tested using this 
equation: 
 

𝑎 ൌ
ଵ

ே
∑ ቀ1 െ 

ห஺೘ି஺೛ห

஺೘
ቁ ∗ 100%ே

௜ୀଵ       (5) 

 
 

Table 9: Confusion matrix for the estimated samples 

From \ To Avoidanc
e 

Transferenc
e 

Acceptanc
e 

Tota
l 

% 
Correct 

Avoidance 10 16 8 34 29.41% 

Transferenc
e 

0 32 1 33 96.97% 

Acceptance 0 11 22 33 66.67% 

Total 10 59 31 100 --- 

 
The accuracy for FLORA is determined after the error 

of the dataset result is calculated. The experimental 
outcomes of the countermeasure results and the fuzzy 
model predicted values for FLORA are shown in Table 10. 
 

The highest percentage of error in the fuzzy model 
prediction is 0.32%. The low level of errors shows that the 
fuzzy predicted countermeasure results are very close to the 
actual experimental countermeasure values. Table 10 also 
shows that the fuzzy model accuracy is 90.11%. The value 
of the accuracy shows that the proposed model can predict 
the vulnerability of a system, and it can also be observed 
from the associated graph’s trend lines. 
 
 

 
 
7. Discussion, Challenges & Recommendations   
 

The development of the FLORA system, with an object 
risk analysis and assessment technique for online IDPS, was 

performed by modifying the FLORA’s controller module’s 
algorithm and combining it with an Object Risk analysis 
management mechanism that can significantly reduce false 
positive alarm rates during intrusion detection activities to 
a minimum, providing a high level of countermeasures 
against various types of cyber-attacks. The highest 
percentage of error in the FLORA model prediction is 
0.32%, showing that the fuzzy logic mechanism predicting 
countermeasure results is very close to the actual 
experimental values and achieves a high fuzzy accuracy 
rate of 90.11%. It demonstrates that it can successfully 
predict vulnerabilities with a very high level of confidence. 
By far, it has superiority over comparable experimental 
IDPS specialising in DDoS alone that have a much poorer 
false positive alarm rate [17]. This is attributed to the basic 
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FLORA controller-IDPS without modification of the fuzzy 
logic algorithm but combining it with innovative risk 
management analysis and assessment mechanisms.  
 

The main objective was to reduce the complexity and 
dimensionality of the selected feature set. In designing and 
developing FLORA, discretization, feature selection, and 
accuracy calculation were performed simultaneously which 
resulted in a highly prepared detection mechanism that also 
reduced the computational processing cost. It was, however, 
observed that for the detection of continuous attacks by 
FLORA’s controller, if the same parameters are applied to 
all attributes, classification accuracy varied widely. The 
combinations of FLORA’s controller with objective risk 
analysis for different attributes in different clusters yielded 
the best results regarding classification accuracy.  
 

Although statistical analysis was used to determine the 
active attributes of each class, results indicate more work is 
required to try different statistical methods. In addition, 
while some attributes in semantic terms are expressed 

through the use of fuzzy logic and “patterns”, more intensive 
work is also required by deploying advanced machine 
learning and optimization techniques to dynamically 
discover and derive production rules through a smarter 
ontology for much better and smarter accuracy. Also, deep 
neuro-fuzzy systems show promising application trends 
[21], which can further enhance the FLORA model and 
accrue substantial benefits. The combination of these 
techniques is currently a work in progress.  
 

When one takes into account assessing IoT and Cloud 
Computing risks in open system environments and attack 
detection and prevention policies, then enterprises should 
deploy more robust sophisticated automated risk 
identification and assessment methodologies and 
procedures from the life-cycle starting at system 
requirements capture, design, development, testing, 
verification and validation phases, by applying the 
fundamental principle of the least privilege, coupled with 
firewalls, advanced detection tools, and other security 
technologies in order to identify any anomalous untoward 
behaviour that results from their compromises, and in the 
best case scenario, proactively and dynamically rectify the 
problem on demand. This is a huge challenge waiting to be 
performed by new research and development.  
 

Using data analytics with advanced datamining, 
predictive artificial intelligence, machine learning, and 
optimization techniques in conjunction with autonomic 
computing techniques and practical defensive mechanisms 
would further enhance reducing or eliminating risks and 

false alarm rates to their absolute minimum in the next 
generation of IDPSs.  
 

Since it is difficult to collect evidence to support IoT 
and Cloud Computing cybercrime cases without deductive 
knowledge, and even more challenging to connect various 
pieces of evidence into a chain of custody, it is critically 
important to consider the classification of the crime, the 
methods of collecting evidence, and all relevant laws and 
regulations in an extremely consistent manner through the 
build-up of a semantically rich ontology and the use of 
blockchain technology for authenticity [20]. The systematic 
classification of data, using advanced data mining 
techniques to categorize data and information about various 
assets [21] for aiding more accurate analysis should be the 
norm. Such classifications should also initially assist 
analysts to predict the target class for each new case in the 
data and information flow to enrich the ontology. Cloud 
computing platforms supporting IoT-related cybercrimes 
can be categorized into three basic classes namely IoT as a 
target, IoT as a tool, and IoT as an eyewitness. This alone 
signals the need for a comprehensive semantic ontology in 
its sphere of operation.  
 

There is also tremendous scope in advancing new 
research in the IDPS field, by drawing in advanced digital 
forensic computing and cybercrime investigation 
methodologies and techniques to complement it. Digital 
forensics would be a significant advantage as an add-on, to 
not only minimise various types of security risk through 
proactive preventative methods but also hold the culprit 
responsible to be prosecuted. These challenges are open to 
new ideas and areas of research and development. 
 
8. Conclusion    
 

As cyber-attacks become more complex and intractable, 
the prerequisite to deliver efficient and effectual intrusion 
detection and prevention solutions intensifies. Many current 
IDPSs have limitations and drawbacks such as centralised 
analysis of false alarms. The deficiency of centralised 
IDPSs is best eliminated by designing and deploying 
federated and distributed collaborative self-governing 
agents based on autonomic computing coupled with 
artificial intelligence techniques. In this research, a FLORA 
solution was proposed that is more effective than many 
comparable IDPSs. FLORA provides an intelligent IDPS, 
which minimized the number of false-positive alarms, 
owing to the ingenious use of risk assessment and analysis 
management functions, using a combination of 
collaborative and autonomic system components with fuzzy 
logic. It also provides craftier prevention by focusing on 
attacks ascertained by false-positive alarms. The main 
objective was to establish how to make FLORA-based 
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IDPS much smarter from different points of view and with 
the aid of an assortment of technologies and techniques. 
 

Future research and development initiatives are required 
to extend the concepts of FLORA by implementing the use 
of an incessantly evolving ICT security ontology 
encompassing intrusion detection and prevention, and 
digital forensics information cradle, built upon the life-
cycle components of risk management analysis (assets, 
threats, vulnerabilities, and countermeasures), and forward 
advance predicting intrusions techniques from continuously 
scanning of an up-to-date knowledge database. There is also 
a huge challenging opportunity as future work to implement 
the fuzzy logic risk management architectural model using 
the latest artificial intelligence and autonomic computing 
advance techniques, to enhance intelligent IDPSs further 
that allows for fully automated self-management computing 
with dynamic adaptivity and awareness comprising of self-
configuration (in real-time), self-healing (error correcting), 
self-optimization (optimal functioning of automated 
resource control), self-protection (proactive detection and 
preventive protection from attacks). It is perceived to 
dramatically improve detection and prevention 
performance, as well as reduce the necessity to deploy 
manual reverse engineering to categorise alarms, which 
itself is largely an error-prone exercise. Autonomic 
computing could also enable the development of a 
semantically rich ontology-driven, self-updating 
knowledge database of newly detected attacks, thus, aiming 
at further reducing false alarm rates, while providing a 
sophisticated platform for deploying countermeasures in 
preventing such attacks. It is also envisaged that deploying 
data analytics with advanced predictive artificial 
intelligence and optimization techniques in the next 
generation of IDPSs would accrue substantial benefits. My 
research is currently investigating how to accommodate a 
more advanced form of digital forensic computing 
capability from the cyber security attacks discovered by 
FLORA to aid law enforcement agencies. 
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