DOI QR코드

DOI QR Code

COLORNET: Importance of Color Spaces in Content based Image Retrieval

  • Judy Gateri (Department of Computing, Jomo Kenyatta University of Agriculture and Technology) ;
  • Richard Rimiru (Department of Computing, Jomo Kenyatta University of Agriculture and Technology) ;
  • Micheal Kimwele (Department of Computing, Jomo Kenyatta University of Agriculture and Technology)
  • Received : 2023.05.05
  • Published : 2023.05.30

Abstract

The mainstay of current image recovery frameworks is Content-Based Image Retrieval (CBIR). The most distinctive retrieval method involves the submission of an image query, after which the system extracts visual characteristics such as shape, color, and texture from the images. Most of the techniques use RGB color space to extract and classify images as it is the default color space of the images when those techniques fail to change the color space of the images. To determine the most effective color space for retrieving images, this research discusses the transformation of RGB to different color spaces, feature extraction, and usage of Convolutional Neural Networks for retrieval.

Keywords

Acknowledgement

The completion of this undertaking could not have been possible without participation of many people whose names may not been enumerated and therefore we would like to express our deep appreciation to them.

References

  1. Gowda SN, Yuan C. ColorNet: Investigating the importance of color spaces for image classification. In Asian Conference on Computer Vision 2018 Dec 2 (pp. 581-596). Springer, Cham. 
  2. Mokrzycki WS, Tatol M. Color difference∆ E-A survey. Machine graphics and vision. 2011 Apr;20(4):383-411. 
  3. https://en.wikipedia.org/wiki/Adobe_RGB_color_space 
  4. Al-saleem, R. M., Al-Hilali, B. M., & Abboud, I. K. (2020). Mathematical Representation of Color Spaces and Its Role in Communication Systems. Journal of Applied Mathematics, 2020. 
  5. van den Broek EL, Kok T, Schouten TE, Vuurpijl LG. Human-centered content-based image retrieval. InHuman Vision and Electronic Imaging XIII 2008 Feb 14 (Vol. 6806, p. 68061L). International Society for Optics and Photonics. 
  6. Al-saleem RM, Al-Hilali BM, Abboud IK. Mathematical Representation of Color Spaces and Its Role in Communication Systems. Journal of Applied Mathematics. 2020 May 18;2020. 
  7. Raja R, Kumar S, Mahmood MR. Color Object Detection Based Image Retrieval Using ROI Segmentation with Multi-Feature Method. Wireless Personal Communications. 2020 Jan 1:1-24.  https://doi.org/10.1007/s11277-019-07021-6
  8. Qazanfari H, Hassanpour H, Qazanfari K. Content-Based Image Retrieval Using HSV Color Space Features. International Journal of Computer and Information Engineering. 2019 Sep 5;13(10):537-45. 
  9. Meng X, An Y, He J, Zhuo Z, Wu H, Gao X. Similar image retrieval only using one image. Optik. 2016 Jan 1;127(1):141-4.  https://doi.org/10.1016/j.ijleo.2015.10.041
  10. Xu YY. Multiple-instance learning based decision neural networks for image retrieval and classification. Neurocomputing. 2016 Jan 1;171:826-36.  https://doi.org/10.1016/j.neucom.2015.07.024
  11. Zarchi MS, Monadjemi A, Jamshidi K. A semantic model for general purpose content-based image retrieval systems. Computers & Electrical Engineering. 2014 Oct 1;40(7):2062-71.  https://doi.org/10.1016/j.compeleceng.2014.07.008
  12. Ajam A, Forghani M, AlyanNezhadi MM, Qazanfari H, Amiri Z. Content-based Image Retrieval Using Color Difference Histogram in Image Textures. In2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) 2019 Dec 18 (pp. 1-6). IEEE. 
  13. Mohamed, O., Mohammed, O., & Brahim, A. (2017, October). Content-based image retrieval using convolutional neural networks. In First International Conference on Real Time Intelligent Systems (pp. 463-476). Springer, Cham. 
  14. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC. Imagenet large scale visual recognition challenge. International journal of computer vision. 2015 Dec 1;115(3):211-52.  https://doi.org/10.1007/s11263-015-0816-y
  15. Srivastava RK, Greff K, Schmidhuber J. Training very deep networks. InAdvances in neural information processing systems 2015 (pp. 2377-2385). 
  16. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 770-778). 
  17. Zagoruyko S, Komodakis N. Wide residual networks. arXiv preprint arXiv:1605.07146. 2016 May 23. 
  18. C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.  https://doi.org/10.1007/BF00994018
  19. C. M. Bishop, Pattern recognition and machine learning. Springer, 2009. 
  20. Wiatowski, T., & Bolcskei, H. (2017). A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Transactions on Information Theory, 64(3), 1845-1866.  https://doi.org/10.1109/TIT.2017.2776228
  21. https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz 
  22. Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an overview and application in radiology. 
  23. Insights into imaging. 2018 Aug 1;9(4):611-29. 
  24. S. Ioffe and C. Szegedy, "Batch normalization: accelerating deep network training by reducing internal covariate shift," vol. 1502, 2015, https://arxiv.org/abs/1502.03167. 
  25. Si, L., Xiong, X., Wang, Z., & Tan, C. (2020). A Deep Convolutional Neural Network Model for Intelligent Discrimination between Coal and Rocks in Coal Mining Face. 
  26. G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. http://arxiv.org/abs/1207.0580,2012 
  27. Cios KJ, Pedrycz W, Swiniarski RW. Data mining methods for knowledge discovery. Springer Science & Business Media; 2012 Dec 6. 
  28. Suh JH. Comparing writing style feature-based classification methods for estimating user reputations in social media. SpringerPlus. 2016 Dec 1;5(1):261.