DOI QR코드

DOI QR Code

Prediction behavior of the concentric post-tensioned anchorage zones

  • Shangda Chen (School of Civil Engineering, Changchun University of Architecture and Civil Engineering) ;
  • Linyun Zhou (School of Science, Nanjing University of Science and Technology)
  • 투고 : 2022.04.24
  • 심사 : 2024.04.17
  • 발행 : 2023.10.25

초록

Methods for designing the post-tensioned anchorage zones at ultimate limit state has been specified in current design codes based on strut-and-tie models (STM). However, it is still not clear how to estimate the serviceability behavior of the anchorage zones. The serviceability is just indirectly taken into account by means of the reasonable reinforcement detailing. To address this issue, this paper is devoted to developing a modified strut-and-tie model (MSTM) to predict the behavior of concentric anchorage zones throughout the loading process. The principle of stationary complementary energy is introduced into STM at each load step to satisfy the compatibility condition and generate the unique MSTM. The structural behavior of anchorage zones can be achieved based on MSTM from loading to failure. Simplified formulas have been proposed to estimate the first cracking load, bearing capacity and maximum crack width with the consideration of the details of reinforcement bursting bars. The proposed model provides a definite method to control the bursting crack width in concentric anchorage zones. Four specimens with different bearing plate ratios have been designed and tested to validate the proposed method.

키워드

과제정보

This work was sponsored in part by 2023 Scientific research projects of the Education Department of Jilin Province of China (JJKH20231486KJ).

참고문헌

  1. AASHTO (2014), AASHTO LRFD bridge design specifications, Washington, DC, USA.
  2. ACI Committee 318 (2019), Building Code Requirements for Reinforced Concrete and Commentary, American Concrete Institute; Farmington Hills, MI, USA.
  3. ASCE-ACI Committee 445 on Shear and Torsion (1998), "Recent approaches to shear design of structural concrete", J. Struct. Eng., 24, 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  4. Berezovytch, W. (1970), "A study of the behavior of a single strand post-tensioning anchor in concrete slabs", Master Dissertation; The University of Texas at Austin, TX, USA.
  5. Breen, J.E., Burdet, O., Roberts, C., Sanders, D. and Wollmann, G. (1994), "Anchorage zone reinforcement for post-tensioned concrete girders", National Cooperative Highway Research Program Report 356, Washington, DC, USA, 8-11.
  6. Cervenka, V. and Ganz, H. (2014), "Validation of post-tensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038
  7. Geng, X., Zhou, W. and Yan, J. (2019), "Reinforcement of orthogonal ties in steel-fiber-reinforced reactive powder concrete anchorage zone", Adv. Struct. Eng., 22(10), 2311-2321. https://doi.org/10.1177/1369433219838085
  8. Gergely, P. and Sozen, M.A. (1967), "Design of anchorage zone reinforcement in prestressed concrete beams", PCI J., 12(2), 63-75. https://doi.org/10.15554/pcij.04011967.63.75
  9. Guyon, Y. (1953), Prestressed Concrete, John Wiley and Sons, New York, USA.
  10. He, Z. and Liu, Z. (2011), "Investigation of bursting forces in anchorage zones: compression- dispersion models and unified design equation", ASCE J. Bridge Eng., 16(6), 820-827. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000187
  11. Hou, D., Zhao, J, Shen, L. and Chen, J. (2017), "Investigation and improvement of strut-and-tie model for design of end anchorage zone in post-tensioned concrete structure", Constr. Build. Mater., 136, 482-494. https://doi.org/10.1016/j.conbuildmat.2017.01.033
  12. Kim, S. and Kim, T. (2017), "A stress analysis of the posttensioned anchorage zones using UHPC", Key Eng. Mater., 737, 500-504. https://doi.org/10.4028/www.scientific.net/KEM.737.500
  13. Kim, J., Kwak, H. and Kim, B. (2019), "Design equation to evaluate bursting forces at the end zone of post-tensioned members", Comput. Concrete, Int. J., 24(5), 423-436. https://doi.org/10.12989/cac.2019.24.5.423
  14. Korea Road and Transportation Association (KRTA) (2010), Design Code for Highway Bridges, KRTA, Seoul, Republic of Korea.
  15. Li, X., Wu, Z., Zheng, J. and Wei, D. (2015), "Effect of loading rate on the bond behavior of plain round bars in concrete under lateral pressure", Constr. Build. Mater., 94, 826-836. https://doi.org/10.1016/j.conbuildmat.2015.07.085
  16. Lourenco, M. and Almeida, J. (2013), "Adaptive stress field models: formulation and validation", ACI Struct. J., 110, 71-81.
  17. Marchao, C., Lucio, V. and Ganz, H. (2019), "Efficiency of the confinement reinforcement in anchorage zones of posttensioning tendons", Struct. Concrete, 20(3), 1182-1198. https://doi.org/10.1002/suco.201800238
  18. Model Code (2010), Final draft, fib - Bulletins 65 & 55, Fib; Lausanne, Switzerland.
  19. Oluokun, F. (1991), "Prediction of concrete tensile strength from its compressive strength", ACI Mater. J., 88(3), 302-309. https://doi.org/10.14359/1942
  20. Park, Y., Kim, M., Park, J. and Jeon, S. (2020), "An improved equation for predicting compressive stress in posttensioned anchorage zone", Adv. Civil Eng., 2020, 5635060. https://doi.org/10.1155/2020/5635060
  21. Post-Tensioning Institute (2000), Anchorage Zone Design, Phoenix, AZ, USA.
  22. Rebelo, J., Carla, M. and Lucio, V. (2021), "Study on the efficiency of confinement reinforcement in post-tensioning anchorage zones", Magaz. Concrete Res., 73(6), 271-287. https://doi.org/10.1680/jmacr.19.00050
  23. Ro, K.M., Kim, M.S. and Lee, Y.H. (2020), "Validity of anchorage zone design for post tensioned concrete members with high-strength strands", Appl. Sci., 10(9), 3039. https://doi.org/10.3390/app10093039
  24. Sahoo, D., Singh, D. and Bhargava, P. (2009), "Investigation of dispersion of compression in bottle-shaped struts", ACI Struct. J., 2, 178-186.
  25. Sanders, D. and Breen, J. (1997), "Post-tensioned anchorage zones with single straight concentric anchorages", ACI Struct. J., 2, 146-158. https://doi.org/10.14359/469
  26. Steensels, R., Vandewalle, L., Vandoren, B. and Degee, H. (2017), "A two-stage modelling approach for the analysis of the stress distribution in anchorage zones of pre-tensioned concrete elements", Eng. Struct., 143(15), 384-397. https://doi.org/10.1016/j.engstruct.2017.04.011
  27. Stone, W., Filho, W. and Breen, J.E. (1984), "Behavior of posttensioned girder anchorage zones", PCI J., 29(1), 64-109. https://doi.org/10.15554/pcij.01011984.64.109
  28. Tan, H., Zeng, Y. and Zhang, Q. (2020), "Optimization method of fatigue maintenance for cable-beam anchorage zone of suspension bridge", Science Progress, 103, 1-12. https://doi.org/10.1177/0036850420950137
  29. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
  30. Wong, K. (1986), "Shear strength and bearing capacity of reinforced concrete deep beams", Ph.D. Dissertation; The University of Leeds, UK.
  31. Zhou, L., Liu, Z. and He, Z. (2015), "Further investigation of transverse stresses and bursting forces in post tensioned anchorage zones", Struct. Concrete, 16, 84-92. https://doi.org/10.1002/suco.201400005
  32. Zhou, L., Liu, Z. and He. Z. (2017), "Elastic-to-plastic strut and tie model for concentric anchorage zones", J. Bridge Eng., 22, 04017070. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001060