DOI QR코드

DOI QR Code

Experimental investigation of steel fiber effects on anti-penetration performance of self-compacting concrete

  • Jian Ma (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China) ;
  • Liang Bian (Naval Architecture and Civil Engineering, Jiangsu University of Science and Technology) ;
  • Jie Zhang (Naval Architecture and Civil Engineering, Jiangsu University of Science and Technology) ;
  • Kai Zhao (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China) ;
  • Huayan Yao (School of Civil and Hydraulic engineering, Hefei University of Technology) ;
  • Yongliang Zhang (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
  • 투고 : 2021.06.11
  • 심사 : 2023.11.04
  • 발행 : 2023.08.25

초록

Steel fiber reinforced self-compacting concrete (SFRSCC) has good workability such as high flowability and good cohesiveness. The workability, compressive strength, splitting tensile strength, and anti-penetration characteristics of three kinds of SFRSCC were investigated in this paper. The fraction of steel fibers of the SFRSCC is 0.5%, 1.5% and 2.0% respectively. The results of the static tests show that the splitting tensile strength increases with the increase of fraction of steel fibers, while the compressive strength of 1.5% SFRSCC is lowest. It is demonstrated that the anti-penetration ability of 1.5% SFRSCC subjected to a velocity projectile (200-500 m/s) is better than 0.5% and 2.0% SFRSCC according to the experimental results. Considering the steel fiber effects, the existing formula is revised to predict penetration depth, and it is revealed that the revised predicted depth of penetration is in good agreement with the experimental results. The conclusion of this paper is helpful to the experimental investigations and engineering application.

키워드

과제정보

This work is supported by the National Natural Science Foundation of China (No. 12102428, No. 11502099, No. 11802001 and No. 11472008), the Fundamental Research Funds for the Central Universities (WK2090000019), Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (2018SGG02). Suzhou science and technology Bureau (SS2019018) and Zhangjiagang science and technology Bureau (ZKS2001). The authors declare that they have no conflict of interest.

참고문헌

  1. ACI Committee (2008), Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
  2. Al-Rawi, S. and Taysi, N. (2018), "Performance of selfcompacting geopolymer concrete with and without GGBFS and steel fiber", Adv. Concrete Constr., Int. J., 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
  3. Almusallam, T.H., Siddiqui, N.A., Iqbal, R.A. and Abbas, H. (2013), "Response of hybrid-fiber reinforced concrete slabs to hard projectile impact", Int. J. Impact Eng., 58, 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005
  4. Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A. and Abbas, H. (2015), "Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs", Int. J. Impact Eng., 81, 61-73. https://doi.org/10.1016/j.ijimpeng.2015.03.010
  5. Canovas, M.F. and Gaitan, V.H. (2012), "Behavior of steel fiber high strength concrete under impact of projectiles", Materiales de Construccion, 62(307), 381-396. https://doi.org/10.3989/mc.2012.00911
  6. Chen, X.W. and Li, Q.M. (2002), "Deep penetration of a nondeformable projectile with different geometrical characteristics", Int. J. Impact Eng., 27(6), 619-637. https://doi.org/10.1016/S0734-743X(02)00005-2
  7. Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
  8. Ding, X., Zhao, M., Zhou, S., Fu, Y. and Li, C. (2019), "Statistical analysis and preliminary study on the mix proportion design of self-compacting steel fiber reinforced concrete", Materials, 12(4), 637. https://doi.org/10.3390/ma12040637
  9. Feng, J., Gao, X., Li, J., Dong, H., He, Q., Liang, J. and Sun, W. (2019a), "Penetration resistance of hybrid fiber-reinforced highstrength concrete under projectile multi-impact", Constr. Build. Mater., 202, 341-352. https://doi.org/10.1016/j.conbuildmat.2019.01.038
  10. Feng, J., Gao, X., Li, J., Dong, H., Yao, W., Wang, X. and Sun, W. (2019b), "Influence of fiber mixture on impact response of ultra-high-performance hybrid fiber reinforced cementitious composite", Compos. Part B, Eng., 163, 487-496. https://doi.org/10.1016/j.compositesb.2018.12.141
  11. Gulsan, M.E., Alzeebaree, R., Rasheed, A.A., Nis, A. and Kurtoglu, A.E. (2019), "Development of fly ash/slag based selfcompacting geopolymer concrete using nano-silica and steel fiber", Constr. Build. Mater., 211, 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228
  12. He, T., Wen, H.M. and Guo, X.J. (2011), "A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy", Acta Mechanica Sinica, 27(6), 1001-1012. https://doi.org/10.1007/s10409-011-0505-1
  13. Iqbal, S., Ali, A., Holschemacher, K. and Bier, T.A. (2015), "Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC)", Constr. Build. Mater., 98, 325-333. https://doi.org/10.1016/j.conbuildmat.2015.08.112
  14. Kennedy, R.P. (1976), "A review of procedures for the analysis and design of concrete structures to resist missile impact effect", Nuclear Engi. Des., 37, 183-203. https://doi.org/10.1016/0029-5493(76)90015-7
  15. Khaloo, A., Raisi, E.M., Hosseini, P. and Tahsiri, H. (2014), "Mechanical performance of self-compacting concrete reinforced with steel fibers", Constr. Build. Mater., 51(01), 179-186. https://doi.org/10.1016/j.conbuildmat.2013.10.054
  16. Lee, S., Kim, G., Kim, H., Son, M., Choe, G. and Nam, J. (2018), "Strain behavior of concrete panels subjected to different nose shapes of projectile impact", Materials, 11(3), 409. https://doi.org/10.3390/ma11030409
  17. Li, Q.M. and Chen, X.W. (2003), "Dimensionless formulae for penetration depth of concrete target impacted by a nondeformable projectile", Int. J. Impact Eng., 28(1), 93-116. https://doi.org/10.1016/S0734-743X(02)00037-4
  18. Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R. (2005), "Local impact effects of hard missiles on concrete targets", Int. J. Impact Eng., 32(1-4), 224-284. https://doi.org/10.1016/j.ijimpeng.2005.04.005
  19. Li, P.P., Yu, Q.L. and Brouwers, H.J.H. (2018), "Effect of coarse basalt aggregates on the properties of Ultra-High Performance Concrete (UHPC)", Constr. Build. Mater., 170, 649-659. https://doi.org/10.1016/j.conbuildmat.2018.03.109
  20. Li, N., Lu, Y., Li, S. and Gao, D. (2020a), "Axial compressive behaviour of steel fibre reinforced self-stressing and selfcompacting concrete-filled steel tube columns", Eng. Struct., 222, 111108. https://doi.org/10.1016/j.engstruct.2020.111108
  21. Li, P.P., Brouwers, H.J.H. and Yu, Q. (2020b), "Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance", Int. J. Impact Eng., 136, 103434. https://doi.org/10.1016/j.ijimpeng.2019.103434
  22. Liu, J., Wu, C., Li, J., Su, Y., Shao, R., Liu, Z. and Chen, G. (2017), "Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration", Int. J. Impact Eng., 109, 131-149. https://doi.org/10.1016/j.ijimpeng.2017.06.006
  23. Lovichova, R., Mara, M. and Fornusek, J. (2017), "Projectile impact resistance of UHPFRC structures for various methods of fresh mixture placement", Procedia Eng., 193, 80-87. https://doi.org/10.1016/j.proeng.2017.06.189
  24. Mahakavi, P. and Chithra, R. (2019), "Impact resistance, microstructures and digital image processing on selfcompacting concrete with hooked end and crimped steel fiber", Constr. Build. Mater., 220, 651-666. https://doi.org/10.1016/j.conbuildmat.2019.06.001
  25. Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", Int. J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003
  26. Mohamed, R.N., Zamri, N.F., Elliott, K.S., Rahman, A.B.A. and Bakhary, N. (2019), "Steel fibre self-compacting concrete under biaxial loading", Constr. Build. Mater., 224, 255-265. https://doi.org/10.1016/j.conbuildmat.2019.07.076
  27. Nili, M., Ghorbankhani, A.H., AlaviNia, A. and Zolfaghari, M. (2016), "Assessing the impact strength of steel fibre-reinforced concrete under quasi-static and high velocity dynamic impacts", Constr. Build. Mater., 107, 264-271. https://doi.org/10.1016/j.conbuildmat.2015.12.161
  28. Prakash, A., Srinivasan, S.M. and Rama Mohan Rao, A. (2017), "Application of steel fibre reinforced cementitious composites in high velocity impact resistance", Mater. Struct., 50(1), 6. https://doi.org/10.1617/s11527-016-0872-y
  29. Rui, Y. and Wang, J. (2021), "Anti-penetration and Anti-explosion Performance Analysis of Steel Fiber Reinforced Concrete Target with Bulletproof Steel Plate", Bing Gong Zi Dong Hua 1, 88. Web.
  30. Soufeiani, L., Raman, S.N., Jumaat, M.Z.B., Alengaram, U.J., Ghadyani, G. and Mendis, P. (2016), "Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading - a review", Eng. Struct., 124, 405-447. https://doi.org/10.1016/j.engstruct.2016.06.029
  31. Sovjak, R., Vavrinik, T., Zatloukal, J., Maca, P., Micunek, T. and Frydryn, M. (2015), "Resistance of slim UHPFRC targets to projectile impact using in-service bullets", Int. J. Impact Eng., 76, 166-177. https://doi.org/10.1016/j.ijimpeng.2014.10.002
  32. Tai, Y.S. (2009), "Flat ended projectile penetrating ultra-high strength concrete plate target", Theor. Appl. Fract. Mech., 51(2), 117-128. https://doi.org/10.1016/j.tafmec.2009.04.005
  33. US Army (1986), Fundamentals of protective design for conventional weapons; Army Technical Manual (TM).
  34. Wang, S., Le, H.T.N., Poh, L.H., Feng, H. and Zhang, M.H. (2016), "Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact", Int. J. Impact Eng., 95, 89-104. https://doi.org/10.1016/j.ijimpeng.2016.04.013
  35. Wen, H.M. and Yang, Y. (2014), "A note on the deep penetration of projectiles into concrete", Int. J. Impact Eng., 66, 1-4. https://doi.org/10.1016/j.ijimpeng.2013.11.008
  36. Wu, H., Fang, Q., Chen, X.W., Gong, Z.M. and Liu, J.Z. (2015a), "Projectile penetration of ultra-high performance cement based composites at 510-1320 m/s", Constr. Build. Mater., 74, 188-200. https://doi.org/10.1016/j.conbuildmat.2014.10.041
  37. Wu, H., Fang, Q., Gong, J., Liu, J.Z., Zhang, J.H. and Gong, Z.M. (2015b), "Projectile impact resistance of corundum aggregated UHP-SFRC", Int. J. Impact Eng., 84, 38-53. https://doi.org/10.1016/j.ijimpeng.2015.05.007
  38. Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
  39. Xu, Y., Keer, L.M. and Luk, V.K. (1997), "Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles", Int. J. Solids Struct., 34(12), 1479-1491. https://doi.org/10.1016/S0020-7683(96)00099-6
  40. Yarin, A.L., Rubin, M.B. and Roisman, I.V. (1995), "Penetration of a rigid projectile into an elastic-plastic target of finite thickness", Int. J. Impact Eng., 16(5-6), 801-831. https://doi.org/10.1016/0734-743X(95)00019-7
  41. Young, C.W. (1997), Penetration equations (No. SAND-97-2426); Sandia National Labs., Albuquerque, NM, USA.
  42. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2016), "Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact", Cement Concrete Compos., 68, 109-122. https://doi.org/10.1016/j.cemconcomp.2016.02.012
  43. Zarrin, O. and Khoshnoud, H.R. (2019), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., Int. J., 59(1), 133-151. https://doi.org/10.12989/sem.2016.59.1.133
  44. Zhang, J., Maalej, M. and Quek, S.T. (2007), "Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact", J. Mater. Civil Eng., 19(10), 855-863. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855)
  45. Zhang, X., Ruiz, G., Tarifa, M., Cendon, D., Galvez, F. and Alhazmi, W.H. (2017), "Dynamic fracture behavior of steel fiber reinforced self-compacting concretes (SFRSCCs)", Materials, 10(11), 1270. https://doi.org/10.3390/ma10111270
  46. Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, Int. J., 22(1), 63-70. https://doi.org/10.12989/cac.2018.22.1.063