DOI QR코드

DOI QR Code

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran (Department of Mechanisms of Materials, Hanoi University of Mining and Geology (HUMG)) ;
  • Hong X. Vu (Laboratoire des Materiaux Composites pour la Construction LMC2, Universite de LYON, Universite Claude Bernard LYON 1) ;
  • Emmanuel Ferrier (Laboratoire des Materiaux Composites pour la Construction LMC2, Universite de LYON, Universite Claude Bernard LYON 1)
  • Received : 2022.08.08
  • Accepted : 2023.10.31
  • Published : 2023.08.25

Abstract

Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.

Keywords

Acknowledgement

This research has been performed with the support of LMC2 laboratory for the experimental and numerical works and with financial support of the Ministry of Education and Training of Vietnam to the first author, Grant No. B2021-MDA-10.

References

  1. ANSYS (2011), Mechanical APDL element reference, Vol. 14.
  2. Brameshuber, W. (2006), "Textile reinforced concrete - State-of-the-Art", Report of RILEM TC 201-TRC.
  3. Caggegi, C. Lanoye, E., Djama, K., Bassil A. and Gabor, A. (2017), "Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios", Compos. Part B: Eng., 130, 90-102. https://doi.org/10.1016/j.compositesb.2017.07.027
  4. Colombo, I.G., Magri, A., Zani, G., Colombo, M. and di Prisco, M. (2013), "Erratum to: Textile reinforced concrete: Experimental investigation on design parameters", Mater. Struct., 46(11), 1953-1971. https://doi.org/10.1617/s11527-013-0023-7
  5. Colombo, I.G., Colombo, M., di Prisco, M. and Pouyaei, F. (2018), "Analytical and numerical prediction of the bending behaviour of textile reinforced concrete sandwich beams", J. Build. Eng., 17, 183-195. https://doi.org/10.1016/j.jobe.2018.02.012
  6. Contamine, R. (2011), "Contribution a l'etude du comportement mecanique de composites textile-mortier : application a la reparation et/ou renforcement de poutres en beton arme vis-avis de l'effort tranchant", Ph.D. Thesis; Universite Claude Bernard - Lyon I.
  7. Contamine, R., Larbi, A.S. and Hamelin, P. (2011), "Contribution to direct tensile testing of textile reinforced concrete (TRC) composites", Mater. Sci. Eng.: A, 528(29-30), 8589-8598. https://doi.org/10.1016/j.msea.2011.08.009
  8. Djamai, Z.I., Bahrar, M., Salvatore, F., Si Larbi, A. and El Mankibi, M. (2017), "Textile reinforced concrete multiscale mechanical modelling: Application to TRC sandwich panels", Finite Elem. Anal. Des., 135, 22-35. https://doi.org/10.1016/j.finel.2017.07.003
  9. Douk, N., Vu, X.H., Si Larbi, A., Audebert, M. and Chatelin, R. (2021), "Numerical study of thermomechanical behaviour of reinforced concrete beams with and without textile reinforced concrete (TRC) strengthening: Effects of TRC thickness and thermal loading rate", Eng. Struct., 231, 1117-1137. https://doi.org/10.1016/j.engstruct.2020.111737
  10. Ehlig, D., Jesse, F. and Curbach, M. (2010), "High temperature tests on textile reinforced concrete (TRC) strain specimens", In: Aachen University, pp. 141-151.
  11. Ferrara, G., Caggegi, C., Gabor, A. and Martinelli, E. (2019), "Experimental study on the adhesion of basalt textile reinforced mortars (TRM) to clay brick masonry: The influence of textile density", Fibers, 7(12), 103. https://doi.org/10.3390/fib7120103
  12. Giese, A.C.H., Giese, D.N., Dutra, V. and Filho, D. (2021), "Flexural behavior of reinforced concrete beams strengthened with textile reinforced mortar", J. Build. Eng., 33, 1018-1073. https://doi.org/10.1016/j.jobe.2020.101873
  13. Halim, N.H.F.A., Alih, S.C. and Vafaei, M. (2021), "Seismic behavior of RC columns internally confined by CFRP strips" Adv. Concrete Constr., Int. J., 12(3), 217-225. https://doi.org/10.12989/acc.2021.12.3.217
  14. Jawahery, M.S.A., Cevik, A. and Gulsan, M.E. (2022), "3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams", Adv. Concrete Constr., Int. J., 13(1), 45-69. https://doi.org/10.12989/acc.2022.13.1.045
  15. Li, B., Xiong, H., Jiang, J. and Doua. X. (2019), "Tensile behavior of basalt textile grid reinforced engineering cementitious composite", Compos. Part B: Eng., 156, 185-200. https://doi.org/10.1016/j.compositesb.2018.08.059
  16. Li, Y., Yin, S., Dai, J. and Liu, M. (2020), "Numerical investigation on the influences of different factors on the seismic performance of TRC-strengthened RC columns", J. Build. Eng., 30, 1012-1045. https://doi.org/10.1016/j.jobe.2020.101245
  17. Mechtcherine, V. (2013), "Novel cement-based composites for the strengthening and repair of concrete structures", Constr. Build. Mater., 41, 365-373. https://doi.org/10.1016/j.conbuildmat.2012.11.117
  18. Portal, N.W., Flansbjer, M., Johannesson, P., Malaga, K. and Lundgren, K. (2016), "Tensile behaviour of textile reinforcement under accelerated ageing conditions", J. Build. Eng., 5, 57-66. https://doi.org/10.1016/j.jobe.2015.11.006
  19. Portal, N.W., Thrane, L.N. and Lundgren, K. (2017), "Flexural behaviour of textile reinforced concrete composites: Experimental and numerical evaluation", Mater. Struct., 50(1), 1-14. https://doi.org/10.1617/s11527-016-0882-9
  20. Rambo, D.A.S., de Andrade Silva, F., Toledo Filho, R.D. and Gomes, O. (2014), "Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete", Cement Concrete Compos., 48, 26-34. https://doi.org/10.1016/j.cemconcomp.2014.01.007
  21. Rambo, D.A.S., Yao, Y., de Andrade Silva, F., Toledo Filho, R.D. and Mobasher, B. (2017), "Experimental investigation and modelling of the temperature effects on the tensile behavior of textile reinforced refractory concretes", Cement Concrete Compos., 75, 51-61. https://doi.org/10.1016/j.cemconcomp.2016.11.003
  22. Saidi, M. and Gabor, A. (2019), "Use of distributed optical fibre as a strain sensor in textile reinforced cementitious matrix composites", Measurement, 140, 323-333. https://doi.org/10.1016/j.measurement.2019.03.047
  23. Saidi, M. and Gabor, A. (2020), "Adaptation of the strain measurement in textile reinforced cementitious matrix composites by distributed optical fibre and 2D digital image correlation", Strain, 56(1), e12335. https://doi.org/10.1111/str.12335
  24. Tlaiji, T., Vu, X.H., Ferrier, E. and Si Larbi, A. (2018), "Thermomechanical behaviour and residual properties of textile reinforced concrete (TRC) subjected to elevated and high temperature loading: Experimental and comparative study", Compos. Part B: Eng., 144, 99-110. https://doi.org/10.1016/j.compositesb.2018.02.022
  25. Tran, M.T. (2019), "Caracterisation experimentale et modelisation numerique du comportement thermomecanique a haute temperature des materiaux composites renforces par des fibres", Ph.D. Thesis; Universite de Lyon.
  26. Tran, M.T., Vu, X.H. and Ferrier, E. (2019), "Mesoscale experimental investigation of thermomechanical behaviour of the carbon textile reinforced refractory concrete under simultaneous mechanical loading and elevated temperature", Constr. Build. Mater., 217, 156-171. https://doi.org/10.1016/j.conbuildmat.2019.05.067
  27. Tran, M.T., Do, N.T., Dinh, T.T.H., Vu, X.H. and Ferrier, E. (2020a), "A 2-D numerical model of the mechanical behavior of the textile-reinforced concrete composite material: effect of textile reinforcement ratio", J. Min. Earth Sci., 61(3), 47-56. https://doi.org/10.46326/JMES.2020.61(3).06
  28. Tran, M.T., Vu, X.H. and Ferrier, E. (2020b), "Mesoscale numerical modeling and characterization of the effect of reinforcement textile on the elevated temperature and tensile behaviour of carbon textile-reinforced concrete composite", Fire Safe. J., 116, 103186. https://doi.org/10.1016/j.firesaf.2020.103186
  29. Tran, M.T., Vu, X.H., Dao, P.L. and Pham, D.T. (2021), "A 3-D finite element modeling for the textile-reinforced concrete plates under tensile load using a non-linear behaviour for cementitious matrix", J. Sci. Technol. Civil Eng. (STCE) - NUCE, 15(1), 67-78. https://doi.org/10.31814/stce.nuce2021-15(1)-06
  30. Truong, B.T. (2016), "Formulation, performances mecaniques, et applications, d'un materiau TRC pour le renforcement et la reparation de structures en beton/et beton arme : Approches experimentale et numerique", Ph.D. Thesis; Universite de Lyon.
  31. William, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behavior of concrete", In: Association of Bridge and Structural Engineers, Seminar on Concrete Structure subjected to Triaxial Stresses, Paper III-1, Bergamo, Italy.