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Summary 
With the global rise of digital data, the uncontrolled quantity of data 
is susceptible to cyber warfare or cyber attacks. Therefore, it is 
necessary to improve cyber security systems. This research studies 
the behavior of malicious acts and uses Higuchi Fractal Dimension 
(HFD), which is a non-linear mathematical method to examine the 
intricacy of the behavior of these malicious acts and anomalies 
within the cyber physical system. The HFD algorithm was tested 
successfully using synthetic time series network data and validated 
on real-time network data, producing accurate results. It was found 
that the highest fractal dimension value was computed from the 
DoS attack time series data. Furthermore, the difference in the HFD 
values between the DoS attack data and the normal traffic data was 
the highest. The malicious network data and the non-malicious 
network data were successfully classified using the Receiver 
Operating Characteristics (ROC) method in conjunction with a 
scaling stationary index that helps to boost the ROC technique in 
classifying normal and malicious traffic. Hence, the suggested 
methodology may be utilized to rapidly detect the existence of 
abnormalities in traffic with the aim of further using other methods 
of cyber-attack detection. 
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1. Introduction 

Network control systems are being deployed in 
increasing numbers to manage, monitor, and respond to 
physical infrastructure. SCADA systems compatible with 
Internet of Things devices are gradually displacing legacy 
infrastructure, enabling remote control and monitoring of 
isolated systems, as well as data collection and analysis. This 
upgrade benefits industries by increasing the flexibility as 
well as reliability of their deployed systems. Nevertheless, 
allowing external internet connectivity, may expose 
industries' potentially critical infrastructure to an increased 
risk of computer viruses [1]. Five distinct causes contribute 
to the vulnerability of critical infrastructure protection (CIP) 
infrastructure. The first is a deficiency in the availability of 
open protocol standards. Programmable logic controllers 
(PLCs) are usually controlled by proprietary network 
protocols that have not been thoroughly inspected by security 
experts. As a result, PLCs operate as black boxes, 
significantly increasing the attack surface [2]. The second 
reason is the lack of network infrastructure segmentation [3]. 

Due to the widespread use of PLCs that are connected to 
control networks, higher management can analyze data in 
real time. This may result in higher profit margins and shorter 
reaction times to market changes. However, the lack of 
segmentation makes transversal network attacks a very real 
threat The third reason is due to the network's increased 
reliance on commercial off-the-shelf (COTS) equipment [4]. 
The attack surface is increased by utilizing commercially 
available hardware, which opened additional potentially 
weak links. The fourth reason is due to a lack of training and 
an inability to differentiate between cyber-attacks and 
incidents [5,6]. The fifth is the result of organized 
cybercrime's exponential growth, as well as state-sponsored 
cyberwarfare aimed at destabilizing nations [7,8]. 

A Cyber-Physical System (CPS) is a complex, 
multidimensional system that combines control technologies, 
communication, and computing. Due to their critical function 
within the system, CPSs require a high level of security as 
well as robustness to ensure their continued operation is 
reliable. Due to its critical role in ensuring overall anomaly 
detection and system security, CPS is likely to remain a 
critical component. Additionally, due to the nature of CPS 
systems, CPS data is more likely to exhibit implicit 
correlative relationships between data points, which would 
be critical to exploit in more complex data environments for 
CPS security provisions [9]. Fractal analysis was developed 
as a technique for studying mathematical sets of various types 
based on the ideas of fractal geometry. Fractal analysis 
techniques have been widely applied in a variety of fields, 
including biology, chemistry, and physics. The most 
significant achievement of fractal theory has been the 
development of simple mathematical descriptions of 
extremely complex but ubiquitous natural phenomena and 
objects. Just like differential trigonometry, harmonic analysis, 
and equations, fractal analysis is a fundamental mathematical 
tool for modeling and explaining physical reality [10]. In 
view of this observation, the work demonstrates the breadth 
of possible applications of Higuchi Fractal Dimension (HFD) 
to examine the complexity of malicious traffic and 
anomalous behavior within a cyber-physical system.  

2. MOTIVATION 

Fractal properties on a large scale of network traffic 
have the property of self-similarity, which means that they 
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appear qualitatively identical on a sufficiently large scale of 
the time axis and exhibit long-term dependence [11]. As 
computer network traffic data is stochastic and complex in 
nature, linear analysis techniques are limited in detecting 
malicious attacks on data networks. Therefore, this research 
employs a powerful nonlinear analysis technique that is well-
reputed in the field of medical research and is called fractal 
dimension analysis. Moreover, the Higuchi algorithm is used 
to compute the fractal dimension of the data network time 
series data. The computed fractal dimension represents a 
nonlinear metric that will be eventually used to classify 
malicious data and normal data. A nonlinear metric is a 
measure of the complexity of the data under test, as most real-
life problems are non-linear in nature as they change 
stochastically. 

The contribution of this paper is as follows:  

1. We propose a new approach to investigate the 
complexity of malicious traffic and detect anomalous 
behavior within a cyber-physical system based on the 
analysis of the fractal properties of traffic.  

2. Several experiments are performed to verify the 
performance of the proposed approach using four datasets. In 
addition, Receiver Operating Characteristics (ROC) were 
used to assess the classification performance of the computed 
fractal dimension nonlinear metrics data.  

3. THREAT MODEL & SOLUTION 

In this section, we first introduce our threat model, then 
discuss the impact of malicious objects on network systems, 
provide a real-life scenario, and propose a solution. The 
behavior of malicious objects is so varied, and the types of 
cyber-attacks can range from passive to active to advanced 
types of attacks. Therefore, it is of utmost importance to 
understand the behavior of these various types of attacks in 
order to create a defense network system against such attacks. 
One approach to resolving this problem is to use a non-linear 
mathematical model to investigate the characteristics of 
malicious attacks. 

A. THREAT MODEL 

In this research, the threat model concerns malicious objects 
attacking a cyber-physical subsystem. The actual network 
data signals that are captured comprise cyber attacks as well 
as anomalies, sabotages, and system breakdowns. 

B. Real World Example (Petroleum management) 

It is evident that there are cases of cyber-attacks on 
industrial production and distribution systems, which include 
oil, gas, and electricity. The security of a particular 
infrastructure relies not only on its internal vulnerabilities but 
also on the vulnerabilities of other infrastructures that it 
depends on. When coupled with that, by being aware of a 
system weakness, this puts a given infrastructure at risk. For 

example, malicious actors can use vulnerabilities to launch 
aggression against this weak infrastructure [13]. The severity 
of cyber-attacks and their extent to achieving deadly goals in 
real life can be measured by studying different instances. The 
presence of malicious objects or malicious software revealed 
various industrial security incidents, such as in [14,15,16,17]. 
Likewise, the heinous highlighted attacks against the Iranian 
Petroleum Plants (2016) and the petrochemical company 
with a plant in Saudi Arabia (2017) revealed that cyber-
physical systems are subjected to attacks on their respective 
physical infrastructure, communication, and data 
management layers. These attacks demonstrated that when 
attackers target a CIP, they frequently conducted extensive 
research on the system in order to carry out the attack as 
stealthily as possible, tailoring their strategies to the specific 
system. 

C.  SOLUTION 

It is clear that malicious objects have disastrous effects on the 
cyber defence mechanism. To address these issues, this 
research employs a state-of-the-art nonlinear mathematical 
analysis to identify threats and malicious attacks. This 
nonlinear analysis method is used to identify and distinguish 
malicious attacks from other non-malicious attacks that often 
happen in a cyber-physical system. The nonlinear 
mathematical method considers the dynamics and behaviour 
of malicious objects in a cyber-physical system because the 
behaviour of malicious objects is unpredictable. Therefore, 
the nonlinear method is important. 

4. RELATED WORK 

A wide range of IDSs have been developed and tested 
against publicly available datasets. IDS design for various 
applications and the machine learning techniques used to 
construct IDS have been the subject of numerous reviews 
and comparative studies. However, the dataset challenges 
remain unmentioned. As a result, the majority of these 
studies focus exclusively on one aspect of IDS evaluation 
rather than on the entire system. Hodo et al. [19] broadened 
the subject of machine learning techniques by concentrating 
on the importance of feature selection in the entire training 
and evaluation of machine learning approaches. Hamed et al. 
[23] categorized IDS components as follows: (a) pre-
processing/feature extraction, (b) pattern analyser, which 
involves knowledge representation and learning procedures, 
and (c) decision-making. They briefly discussed the 
advantages of each instructional method. Features and their 
impact on the design and accuracy of IDS were thoroughly 
investigated by Varma et al. [20]. Buczak and Guven [18] 
described several machine learning and deep learning 
methods that were employed to build IDS. They explained 
various algorithms, including their time complexity, and 
provided a list of significant articles that employed each 
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technique to address the IDS problem. The characteristics of 
IDS have been discussed in detail by Debar et al. [21], Amer 
and Hamilton [22]. There are also several other aspects of 
intrusion detection systems (IDS) that are discussed. Amit et 
al. [24] discussed various difficulties and challenges 
inherent in developing IDSs that use machine learning. A 
single network architecture is the focus of several other 
perspectives, some of which have been included in recent 
studies. Ismail et al. discussed Wireless Sensor Networks 

(WSN) and their applicability to IDs. Zhou et al. [26] 
discussed IDs in industrial process automation, and 
Ghaffarian and Shahriari [27] investigated machine learning 
(ML) and data mining (DM) techniques for detecting 
software vulnerabilities. These surveys revealed the   design 
and accuracy of different methods, but there is no 
comprehensive overview of the dataset’s shortcomings or 
information on the tools that were used to conduct attacks.

 

5. METHODOLOGY 

5.1  Data Collection from a Cyber-Physical system 

In our study, we analysed a publicly available dataset 
[28]. The dataset includes several common scenarios 
(normal scenario, anomaly scenario, breakdown scenario, 
sabotage scenario, and cyber-attack scenario), each of which 
corresponds to a different real-world situation. The authors 
in [28] collected the dataset in the manner depicted in Fig. 1. 
As illustrated in Figure 1, there were two containers of 
varying sizes. To collect the data, one ultrasound depth 
measurement sensor and two pumps were used in addition 
to the four discrete sensors. The system was controlled by a 
computer via a PLC connector connected to a monitoring 
network system. The ultrasound sensor indicates when the 
main container is filled with liquid and when it is emptied. 
Pump 2 begins filling the second volume container, while 
Pump 1 begins filling the main tank. Tank 2 displays the 
states of the four discrete sensors (sensor 0, sensor 1, sensor 
2, and sensor 3). 

 
Fig 1: The platform of the cyber-physical system which was 
used for data collection [28] 
 

5.2  Nonlinear mathematical method for nonlinear 
systems 

A nonlinear system in the fields of science and 
mathematics is regarded as a system where input change is 
not proportional to output change. As most systems found in 
nature are inherently nonlinear, this system appears 

uncertain or chaotic in relation to a simple linear system. In 
a general perspective, the mathematical expression of 
nonlinear system behaviour is expressed with the help of a 
nonlinear system of equations with the help of variables 
constituting a polynomial of degree which is greater than 1. 
As it is difficult to solve the nonlinear dynamical equations, 
the nonlinear systems are normally computed and 
approximated through linearization [29]. The fractal 
dimension, however, is an important nonlinear mathematical 
method used to determine the behaviour and complexity of 
signals. The fractal analysis method is well grounded in the 
field of medicine to depict any changes in biosignals, and 
previous research demonstrated that the Higuchi’s method 
produces a more accurate estimate of the fractal dimension 
(FD) of a signal when it is being tested on synthetic data, but 
it is noise sensitive [29,30]. 

5.3  Fractal Dimension using Higuchi’s algorithm  

The fractal dimension [30] of a time series can be 
computed directly using Higuchi’s algorithm in the signal’s 
time domain. Higuchi’s algorithm is dependent on the 
measurement of the length, L (k), of the curve that denotes 
the time series, and it uses a segment of k samples as a unit 
only if L (k) scales as per the following equation (See 
Equation 1): 
                         L(k) ~ 𝑘ି஽೑                   (1) 
Df value is always in range of 1 and 2. Df value is equivalent 
to 1, which indicates a simple curve. Whereas a Df value of 
2 represents a curve that approximately fills out the whole 
plane. From a given time series, X (1), X (2), X(N), the k new 
time series of the algorithm is constructed as: 

𝑿𝒌𝒎 : X(m), X(m+k), X(m+2k) ..., X (m + int (
ሺேି௠ሻ

௞
 ).k ) for 

m = 1, 2, k 
Where m is the initial time, k is the interval time, int (r) is 
integer part of a real number r. 
The length 𝑳𝒎 (k) of each curve 𝑿𝒌𝒎 is determined as 
follows (See Equation 2): 
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 (2) 
                        

 
Where N is the total number of samples.  
Df (Fractal dimension) is computed through a linear least 
square best fitting method to determine the angular 
regression coefficient of the log-log plot of equation (1). 
 

5.4  Pseudocode of Fractal dimension model using 
Higuchi’s algorithm and Its Time Complexity  

We computed the time complexity of Fractal dimension 
using Higuchi’s algorithm as follows (See Equation 3):  
Time complexity  
 
O (1) + O (1) + O (1) + O(n). O(n) + log (n) + log(n) = O (𝑛ଶሻ (3) 
 
*In calculating complexity, we discard the lower terms 
 
 

Fractal dimension using Higuchi’s algorithm 
Step 1: Load (dataset) 
Step 2: Initialize variables N and X which represent 
length of data and X is a numeric data type 
Step 3: Initialize variable k = 6 (based on literature) 
some length or distance 
Step 4: Compute Lm (Length of each curve Xkm) 
Step 5: Compute Df using linear least square best fitting 
method (angular regression coefficient of log(L(k)) 
vs.log (k) 
End 

 

5.5 Classification of the FD nonlinear metrics 
using Receiver Operating Characteristics curve 

A receiver operating characteristic curve plots the true 
positive rate (sensitivity) against the false positive rate for 
different cut-off points. The sensitivity of a test represents 
the proportion of the fractal dimension values that represent 
the malicious network data and produces a positive result. 
The specificity of a test (true negative rate) is the proportion 
of the computed fractal dimension values that do not 
represent any malicious network data and produce negative 
outcomes (See Equation4 and 5). Each point on the ROC 
plot represents a sensitivity/specificity pair on the ROC 
curve. For instance, a test that has perfect discrimination 
between two distributions has a ROC plot that passes 

through the upper left corner, which means 100% sensitivity 
as well as 100% specificity. As such, the closer the ROC plot 
is to the upper left corner of the ROC curve, the higher the 
overall accuracy of the ROC test.  
 

       (4)                                  

           (5)                                 
 

6. Result 

The fractal analysis method using Higuchi’s algorithm [30] 
was applied to the time series data for each type of simulated 
scenario, and these time series data were recorded via the 
PLC registers continuously. The mean of the data acquired 
through the various simulated scenarios was computed as 
well as their respective fractal dimension values. The 
simulated scenarios were specifically called: 

 Bad Connection: simulated dataset 
 Simulated DoS Attack Dataset 
 simulated dataset hits 
 A normal simulated dataset 
 Simulated Plastic Bag Dataset 
 Spoofing a simulated dataset 
 Simulated dataset from a wet sensor 

 

6.1  Testing of the implemented Higuchi’s algorithm 

The Higuchi’s algorithm was tested using two artificial 
datasets that were both created in the Matlab environment 
(See Fig. 2 and 3). The first artificial dataset was generated 
using a sine wave function (Function_Sine) and the second 
artificial dataset was generated using a random (rand) 
function to test the reliability of the implemented Higuchi’s 
algorithm in computing the fractal dimension of time series 
signals. The function_Sine = sin (0:0.01:100*π). 
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Fig 2: Sine function with amplitude 1 and computed Higuchi 
Fractal Dimension (HFD) is 1.0001. The accuracy of this 
algorithm is determined to be 99.99%. 
 
Function_Random= rand (1,10000) 

 
Fig 3: A random data was generated for 10000 data points 
and the HFD was found to be 2.0002. 
 

6.2  Application of Fractal Dimension using Higuchi’s 
algorithm on the operational scenarios time series data. 

 
Table 2: HFD for the simulated operational scenarios 

Simulated 
operational 
Scenarios 

Fractal 
Dimension 

Fractal Dimension 
Deviation from 
Normal Data 

Bad 
Connection 

1.6689 0.0747 

DoS Attack 1.8440 0.1004 
Hits on Tank 1.7484 0.0048 
Normal Data 1.7436 0 
Plastic Bag 1.6632 0.0057 
Spoofing 
Attack 

1.6704 0.0804 

Wet Sensor 1.7909 0.0473 
∴Thus, the DoS Attack, L(k) ~ 𝑘ିଵ.଼ସସ଴. 

 
From Table 2, it is clearly observed that each simulated 

scenario produced a different fractal dimension value, and 
the change in fractal dimension value was included as a third 
column to see how a particular anomaly’s characteristic 
behaviour changes as compared to the complexity of normal 
network data. In addition, we observed that the network data 
that is infected with malicious data (DoS attacks) produces 
the highest fractal dimension value. In addition, the 
difference between the fractal dimension value for the 
malicious data (1.8440) and the normal data (1.7436) is 
positive and the magnitude is 0.1004 (See Fig. 4a). This 
difference is the most significant and positive as compared 
to the differences between the non-malicious data and the 
normal data, which are much lower. Therefore, based on this 
key observation, a scaling stationary index was included, so 

that the ROC computation detects all those fractal values 
that are above a threshold value (determined by trial and 
error during computation) in order to achieve a very high 
accuracy in distinguishing between malicious and non-
malicious data. By doing so, our proposed model becomes 
more flexible because it can be tuned to detect malicious 
data from normal traffic data based on the difference 
between the fractal dimension complexity of the malicious 
data and the normal data, where the fractal dimension of the 
time series of the network data will represent the reference 
point. 
 

 
Fig 4a: Sensibility to 1-specificity curve before the scaling 

stationary index is added to the process. 
 

 
Fig 4b: ROC curve analysis of the computed fractal 

dimension values and the targeted outcomes after the 
inclusion of the scaling stationary index. 

 
Figure 4b shows the ROC curve produced between the 

calculated fractal dimension of the various types of network 
data and the corresponding targeted output. The area under 
the curve was determined to be 0.95 and the accuracy was 
found to be 98%. The accuracy reached its maximum by trial 
and error while changing the threshold value in order to 
achieve such maximal accuracy, as well as sensitivity and 
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specificity. The optimum threshold value for maximum 
accuracy was found to be 1.69. The parameters of the ROC 
curve as shown in Fig 4b are summarized in the following 
Table 3. 
 

Table 3: Computed ROC curve parameters 
Parameter names Computed values 
AROC 0.95 
Specificity 0.98 
Sensitivity 1.0 
Accuracy 98% 
scaling stationary index 1.69 

 
Figure 5 depicts the entire process of the various stages 
involved in order to classify malicious data from normal data 
or non-malicious data. 

 

 
Fig 5: Stages of the entire experimental process 

 

6.3  Validation of findings for Darpa Intrusion dataset 

In order to validate the findings, the fractal dimension 
was applied to a real network dataset. The Darpa99 dataset 
[31] was used as benchmark data to see if the fractal 
dimension could be used to predict whether the network data 
encountered malicious attacks. The Darpa99 looks very 
stochastic and represents a real-case scenario, and any 

change in the network data is not easily perceptible with the 
naked eye. The fractal dimension was used to test some 
samples in the data, and it was found that the fractal 
dimension value of the Darpa99 dataset was 1.85, which is 
close to the predicted model that was formulated in the 
previous section. Therefore, based on the high fractal 
dimension values of the traffic network data, which 
contained DoS attacks for both types of data (synthetic data 
and real-time networked data), a scaling stationary index 
was included in the post-fractal analysis program to confirm 
whether a data network contained malicious. The fractal 
dimension value is determined from the network data as well 
as the slope, as shown in Figure 6 and 7. 

 
Fig 6: Darpa99 data network 

 

 
Fig 7: DARPANET network data infected with malicious 
objects whose fractal dimension value is 1.85 (which was 

determined from the slope of the graph) 
 
The accuracy of the method was analysed using the Receiver 
Operating Characteristic method, and it was found to be 98%. 
A more detailed result based on the application of ROC on 
the computed fractal dimension data is provided in Table 3. 
ROC curves represent a very good method to see how any 
predictive model can distinguish between true positives and 
negatives. 
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Table 4: ROC Curve Parameters 

 Before scaling 
stationary index 

After scaling 
stationary index

AROC (AUC) 0.87 0.95 
Specificity 0.81 0.90 
Sensitivity 0.85 0.97 
Accuracy 80% 98% 

 
In Table 4, the variable AROC, which is also known as AUC 
(Area Under Curve), represents the area under the ROC 
curve produced from sensitivity (y-axis) vs. specificity (x-
axis). The sensitivity of the ROC curve was found to be 0.95, 
and it is the ability of a test to identify correctly those data 
networks that contain malicious attacks, whereas the 
specificity is the ability of the test to identify correctly the 
network data that does not contain any malicious data. The 
specificity was found to be 0.90. As such, the fractal 
dimension analysis of the Darpa99 confirms that the 
complexity of the time series network data is very high in 
the presence of malicious data, as the fractal dimension 
values for malicious data networks are very high as well as 
positive. Based on this important observation, a scaling 
stationary index was further included in our model after the 
application of the fractal analysis, to facilitate the 
classification process by the ROC and ensure the 
classification is excellent. 
 
D.  Validation finding for and UNSW-NB15 and NSL KDD 
Datasets 
Apart from the Darpa99 Intrusion dataset, we also tested the 
method on two other well-known benchmark datasets 
known as the NSL KDD and UNSW-NB15 datasets [32,33]. 
Fractal dimensions were calculated for both datasets and it 
was found that the fractal dimension value for the NSL KDD 
data set for DoS attacks is 1.9945, while for the UNSW 
dataset, the fractal dimension value for DoS attacks is 
1.9696. Upon testing with the model given in Figure 
8,9,10,11, and 12, we found the accuracy for NSL dataset 
and UNSW dataset were 93% and 99% respectively. In 
addition, the AUC computed was 0.95 for NSL dataset and 
0.94 for UNSW dataset. However, the algorithm yields a 
specificity of 0.90 for the NSL dataset and for the UNSW 
dataset it is 0.98. Similarly, sensitivity turned out to be in the 
same range as specificity for both datasets. 
 

Table 5: For each category in NSL dataset has a different 
fractal dimension value and the change in fractal dimension 

value was included as a third column. 

 

 
Table 6: For each category in UNSW dataset has a different 
fractal dimension value and the change in fractal dimension 

value was included as a third column. 

 
 
 
 

Table 7: Results obtained for different measures for NSL 
and UNSW datasets 

 
 NSL Dataset UNSW Dataset 
AROC (AUC) 0.95 0.94 
Specificity  0.90 0.98 
Sensitivity  0.91 0.99 
Accuracy  93% 99% 

 
 

 
Fig 8: NSL KDD data network 
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Fig 9: NSL network data infected with malicious objects 
whose fractal dimension value is 1.9945 

  

 
Figure 10: UNSW-NB15 data network 

 

 
Fig 11: UNSW-NB15 network data infected with malicious 

objects whose fractal dimension value is 1.9696 
 

 
Fig 12: AUC-ROC Curve for both NSL and UNSW 

datasets 
 

7. DISCUSSIONS 

It is clearly observed that Fractal Dimension is a 
powerful nonlinear algorithm that can be used in computing 
the complexity of a particular time series of data signals. 
Fractal dimension is a more powerful technique in terms of 
robustness to noisy stochastic data than linear analysis 
techniques, which are often used for malicious object 
detection, such as frequency analysis and wavelet analysis, 
because the latter exploit the visual properties (time and 
frequency) of the network data signals. The fractal 
dimension analysis produces a unique value for each 
assessed scenario by quantifying the non-stationary network 
dataset. Moreover, the fractal dimension can be easily 
implemented owing to its low algorithm complexity. This 
method was used in order to dissociate malicious data from 
normal datasets. The accuracy of the implemented fractal 
dimension together with the receiver operating 
characteristics yields an accuracy of 100%. It was found that 
the HFD for the network data that contained DoS attacks was 
the highest, and the difference between the HFD values for 
the DoS attack traffic data and the normal traffic data was 
the highest. However, even though the HFD value for the 
spoofing attack was low, the difference between the HFD 
value for the spoofing attack and that of the normal dataset 
ranked below the DoS Attack. Furthermore, it is also tested 
on well-known benchmark datasets such as NSL-KDD and 
UNSW-NB15 datasets. The NSL dataset has an HFD value 
of 1.9945 for DoS attacks, and the UNSW dataset has a value 
of 1.9696. For the NSL dataset, the Probe attacks have the 
highest HFD value of 2.0459, but when the difference from 
the normal value is analysed, the highest deviation from the 
normal value is 0.0475 for the R2L attacks. Similarly, for the 
UNSW dataset, the worm attacks have the highest HFD 
value of 2.0285 but the backdoor attacks have more 
deviation from the normal data. Instead of such an abnormal 
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deviation, the proposed algorithm performed well and has 
produced satisfactory results. In terms of numbers, it can be 
seen from table 7. For each measure, such as TPR, accuracy, 
and AUC-ROC, it has given perfect results instead of 
specificity for the UNSW dataset, as it is a complex and 
recent dataset in this domain and contains advanced attacks. 
However, overall, the fractal dimension analysis performed 
well, as evident from the results. Therefore, the fractal 
dimension analysis method can be implemented in a network 
system together with a classification method such as the 
Receiver Operating Characteristics in order to monitor the 
network immune system as well as to detect any malicious 
activities that occur in the network. This research 
successfully classified malicious data (especially DoS-
attacked network data) and non-malicious data with 
maximum accuracy. One key limitation of this research is 
that it does not discriminate between normal and non-
malicious data, such as "Hits on Tank" as an external factor. 
 

8. CONCLUSION 

A non-linear mathematical method called Higuchi 
Fractal Dimension (HFD) is used in this research to 
investigate the intricacy of the behaviour of malicious acts 
and anomalies within the cyber physical subsystem. The 
HFD algorithm was successfully tested on synthetic time 
series network data and validated on real-time network data, 
resulting in accurate values being produced. It was 
discovered that the time series data that had been subjected 
to DoS attacks had the highest fractal dimension value. 
Furthermore, the difference in HFD values between the data 
from the DoS attack and the data from normal traffic was the 
most significant. The Receiver Operating Characteristics 
(ROC) method was successfully applied in the classification 
of both malicious network data and non-malicious network 
data. A scaling stationary index was used to aid in the 
classification of both normal network data and malicious 
data using the Receiver Operating Characteristics (ROC) 
method. As a result, Fractal Dimension has proven to be an 
important component in the tracking of cyber attacks. 
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