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DYNAMICS OF AN IMPROVED SIS EPIDEMIC MODEL

Reza Memarbashi a, ∗ and Milad Tahavor b

Abstract. A new modification of the SIS epidemic model incorporating the adap-
tive host behavior is proposed. Unlike the common situation in most epidemic
models, this system has two disease-free equilibrium points, and we were able to
prove that as the basic reproduction number approaches the threshold of 1, these
two points merge and a Bogdanov-Takens bifurcation of codimension three occurs.
The occurrence of this bifurcation is a sign of the complexity of the dynamics of
the system near the value 1 of basic reproduction number. Both local and global
stability of disease-free and endemic equilibrium point are studied.

1. Introduction

The use of mathematical models in the analysis of changes in infectious diseases

dates back to Daniel Bernoulli in 1766. After Bernoulli, other efforts were made in

this field. The first basic modeling and analysis in this field was done by Kermack

and Mckendrick in 1927. After a break from 1980 onwards, many researchers paid

attention to mathematical epidemiology and many articles were published on various

diseases such as AIDS, tuberculosis, influenza. Researchers have also modeled and

analyzed various effects such as vaccination, quarantine, the existence of multiple

strains, and so on, see [5, 13, 19] and references there in.

In modeling infectious disease, the population is divided into different classes. For

example in the SIR model, proposed by Kermack and Mckendrick, the population

is divided into three categories: susceptible individuals, infected individuals and re-

covered individuals. In diseases in which patients do not gain any immunity after

recovery and return to the class of susceptible individuals, the disease is said to fol-

low the SIS model. Diseases such as tuberculosis, meningitis and gonorrhea follow
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this pattern, see [5, 11, 13]. The original SIS model and a number of its modifica-

tions are converted to the logistic differential equation, which has a simple dynamic,

see [19]. Improved forms of this model have been studied by various researchers, see

[1, 12, 22, 24, 25].

One of the basic assumptions in most epidemic models is that people are passive,

that is, they do not change their behavior during an outbreak of an infectious disease.

D’Onfrio and Manfredi in [8] showed that realistic models should include feedback

on information about the prevalence of the disease. For the review of the studies on

the effect of behavior change in epidemic models, see [3, 7, 9, 14, 20, 21, 27].

Fear of getting the disease and, by its nature, taking cautious behaviors during the

spread of infectious diseases is one of the effective factors in preventing the outbreak

of the epidemic. We improve the SIS model by considering the effect of fear and

caution in preventing disease and by adding a compartment for cautious people.

Unlike the classic SIS model, which has relatively simple dynamics, this model has

complex dynamics.

We organized the paper as follows. In Sec. 2, we present the model, the basic repro-

duction number and study the local and global stability of DFEs. Furthermore, we

prove that under certain conditions two DFE points merge, and the model undergoes

a degenerate Bogdanov-Takens bifurcation of codimension three and the system has

an elliptic sector. In Sec. 3, we study the existence of the endemic equilibrium point

and its local and global stability.

2. Model Formulation and Basic Properties

S1 I

S2

α1
S1S2
N

α2
S1I

I+K

dS2

β
S1I

N

νI

−→
A

↓µS1
↓µI

↑µS2

Figure 1. The flowchart of the model
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Table 1. Description of Notations

Notation Description of Notation
S1 Susceptible individuals
S2 Cautious individuals
I Infectious individuals
µ Natural death rate
ν Recovery rate
A Recruitment rate
α1 Awareness rate
α2 Fear rate
β Infection rate
d The percentage of people who discard or lose their awareness

Our model has the following compartments: S1 are the susceptible individuals,

S2 are the cautious individuals, that is, people who take precautionary measures

to prevent them from contracting the disease, and I are the infected and infectious

individuals. Susceptible individuals become infected at rate β. Individuals by learn-

ing from family, friends, media, social networks, and also concerning psychological

factors go from S1 to S2. We consider two paths to transfer from S1 to S2: (I) Due

to contact with cautious people and encouragement to engage in such behaviors. We

consider the coefficient α1 i.e., awareness rate, as the likelihood of transformation of

a susceptible individual to a cautious individual through contact with such a person

and the effective transfer of information and the standard incidence term α1
S1S2

N
for

the flow of individuals from S1 to S2, in which N is the total population. (II) Due

to the observation of infected individuals and fear of the destructive consequences

of the disease. We let S1F (I) be the type of flow from S1 to S2, in which F (I) is

called the force of fear. A good candidate for the force of fear is a Michaelis-Menten

type function of the form α2
I

K+I
, in which α2 is the fear rate, i.e., the likelihood of

tending to healthy behaviors through observing the adverse effects of the disease.

The value of the constant K is equal to the number of infected individuals at which

the force of fear is half of α2. At low population of infected individuals in the en-

vironment I ≪ K, it varies linearly, F ≈ α2
I
K
. However at higher population of

infected individuals with I ≫ K the force of infection becomes independent of I

and asymptotically approaches its maximum value α2. We take d the percentage of

people who discard or lose their awareness and go to the susceptible compartment.

And A, ν, and µ represent the recruitment rate of the population, the recovery rate,

and the natural death rate.
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By considering the flowchart of the model given in Figure 1, we have the following

system of equations:

(2.1)



































dS1

dt
= A− α1S1(

S2

N
)− α2S1(

I

I +K
) + dS2 − µS1 + νI − βS1(

I

N
)

dS2

dt
= α1S1(

S2

N
)− dS2 + α2S1(

I

I +K
)− µS2

dI

dt
= βS1(

I

N
)− νI − µI

with the initial conditions S1(0), S2(0), I(0) that all are positive. All parameters in

the above system are nonnegative. The total population N(t) = S1(t)+S2(t)+ I(t)

satisfies the equation Ṅ = A − µN(t), so limt→∞N(t) = A
µ

= N0. Following

[17, 18], we study the behavior of our system on the plane S1 + S2 + I = N0 = A
µ
.

Let s1 = S1

N0
, s2 = S2

N0
, i = I

N0
, be the suceptible, cautious and infectious fractions

respectively. Therefore system (2.1) transforms to the following system:

(2.2)



































ds1

dt
= µ− α1s1s2 − α2s1(

i

i+ k
) + ds2 − µs1 + νi− βs1i

ds2

dt
= α1s1s2 − ds2 + α2s1(

i

i+ k
)− µs2

di

dt
= βs1i− νi− µi,

where k = K
N0

. Since s2 = 1− s1 − i, the above system tranforms to the,

(2.3)














ds1

dt
= µ− α1s1(1− s1 − i)− α2s1(

i

i+ k
) + d(1− s1 − i)− µs1 + νi− βs1i

di

dt
= βs1i− νi− µi

We study (2.1) and naturally (2.2) in set (R+)3, so it is natural to study (2.3) in

the following positively invariant set:

Ω = {(s1, i) : s1, i ≥ 0, s1 + i ≤ 1}.

2.1. Disease-free equilibriums The system (2.3) has two disease-free equilibri-

ums (DFEs), E0 = (1, 0) and for α1 > d+µ, E1 = (
d+ µ

α1
, 0). The point E0 is called

the trivial DFE and E1 the nontrivial one. The Jacobian matrix of (2.3) has the

following form
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J(s1, i) =




−α1 + 2s1α1 + α1i−
α2i

i+ k
− d− µ− βi s1(α1 −

α2k

(k + i)2
)− d+ ν − βs1

βi βs1 − ν − µ



 .

Now the Jacobian for the trivial DFE is of the following form

(2.4) J0 = J(E0) =

(

α1 − d− µ α1 −
α2

k
− d+ ν − β

0 β − ν − µ

)

,

and its eigenvalues are

λ1 = α1 − d− µ, λ2 = β − ν − µ

and p = Tr(J(1, 0)) = (α1 − d−µ)+ (β− ν−µ), q = DetJ(1, 0) = (α1− d−µ)(β−
ν − µ).

If α1 − d− µ < 0, and β − ν −µ < 0, then p < 0 and q > 0. Therefore, according to

the linearization theorem, the trivial DFE is a stable node.

For the non-trivial DFE, the Jacobian has the form

J1 = J(E1) =







µ+ d− α1 (α1 −
α2

k
− β)(

d+ µ

α1
)− d+ ν

0 β(
d+ µ

α1
)− ν − µ







with

p = Tr(J(E1)) = (d+ µ− α1) + (β(
d+ µ

α1
))− ν − µ),

q = Det(J(E1)) = (d+ µ− α1)(β(
d + µ

α1
))− ν − µ).

Now if d + µ − α1 < 0 and β(
d+ µ

α1
) − ν − µ < 0, then the non-trivial DFE is a

stable node. The above discussions lead to the following theorem.

Theorem 2.1. 1. The disease-free equilibrium E0 of (2.3) is a stable hyperbolic

node if α1 < d+ µ, and β < ν + µ.

2. The disease-free equilibrium E0 is a hyperbolic saddle point if α1 > d + µ and

β < ν + µ, or α1 < d+ µ and β > ν + µ.

3. The disease-free equilibrium E1 of (2.3) is a stable hyperbolic node if d+ µ < α1

and β(
d+ µ

α1
) < ν + µ.

4. The disease-free equilibrium E1 is a hyperbolic saddle point if β(
d+ µ

α1
) > ν + µ.
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2.2. Basic reproduction number To derive the basic reproduction number R0,

we use the next generation matrix approach introduced in [26], we use notations

as in [19], section 5.3. The systems (2.2) and (2.3) are equivalent and we apply

next generation method to (2.3). We divide the compartments into two categories;

infected compartments x = (s2, i), and non infected compartments y = s1. The

corresponding matrices F(x, y) and V(x, y) have the following forms

F(x, y) =

(

α1s1s2 + α2s1(
i

i+ k
)

βs1i

)

V(x, y) =
(

(d+ µ)s1
(ν + µ)i

)

Now we have,

F =

(

α1
α2

k
0 β

)

, V =

(

d+ µ 0
0 ν + µ

)

.

Therefore, the basic reproduction number is

R0 = ρ(FV −1) = max{R1
0, R

2
0}.

where R1
0 =

α1

d+ µ
and R2

0 =
β

ν + µ
. By applying the results of section 2.1, we

deduce the following proposition for the local stability of DFEs.

Proposition 2.1. In the system (2.3):

1. The trivial DFE is locally asymptotically stable if and only if R1
0 < 1 and R2

0 < 1.

2. The DFE is locally asymptotically stable if and only if R1
0 > 1 and R2

0 < R1
0.

To determine whether the disease can invade the population, we study the global

stability of the DFE equilibrium points.

Theorem 2.2. In the system (2.3), we have:

1. If R1
0 < 1 and R2

0 < 1, then the trivial DFE is globally asymptotically stable.

2. If R1
0 > 1 and R2

0 < 1, then DFE is globally asymptotically stable.

In both cases, the disease cannot invade the population.

Proof. From the second equation of (2.3), we have

i(t) = i(0)e
∫
t

0
(βs1(τ)−(µ+ν))dτ < i(0)e(µ+ν)(R2

0
−1)t,

therefore R2
0 < 1 implies limt→+∞ i(t) = 0, for arbitrary i(0). Using the limit system

theory [6], we need to study the limit of the solutions of

ds1

dt
= (µ + d)− (µ + d)s1 − α1s1(1− s1).
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Separation of variables shows

s1(t) =
ce((µ+d)−α1))t − (µ + d)

ce((µ+d)−α1))t − α1
.

Now it is clear that if R1
0 < 1, i.e., α1 < µ + d, limt→+∞ s1(t) = 1 and if R1

0 > 1,

limt→+∞ s1(t) =
µ+ d

α1
. �

Lemma 2.1. If R1
0 < 1, β < α1, and d ≤ ν, then the trivial DFE is globally

asymptotically stable.

Proof. We have β − ν − µ < α1 − ν − µ < d − ν ≤ 0, hence R2
0 < 1 and the above

theorem implies the global stability of the trivial DFE. �

In Figure 2, we present the phase portrait of the model in two sets of parameters,

with R1
0 < 1, R2

0 < 1 in (a), and R1
0 > 1, R2

0 < 1 in (b).

2.3. Bogdanov-Takens bifurcation The equilibrium points with zero eigenval-

ues with algebraic multiplicity two, in their Jacobian matrix can appear in smooth

autonomous systems of ordinary differential equations

(2.5)
dx

dt
= f(x, γ), x ∈ R

n, γ ∈ R
m,

when n ≥ 2,m ≥ 2. For example, in the system (2.3), when (R1
0, R

2
0) = (1, 1), two

DFE equilibrium points merge, and the equilibrium point (1, 0) has a zero eigenvalue

with algebraic multiplicity two, with the Jordan block

(

0 1
0 0

)

. Such an event is

called a Bogdanov-Takens (BT) bifurcation, see [10]. Bogdanov and Takens in [4, 23]

showed that the restriction of (2.5) to any center manifold at the critical parameter

value can be transformed by smooth coordinate changes to the following form

(2.6)















dw0

dt
= w1

dw1

dt
= Σk≥2(akw

k
0 + bkw

k−1
0 w1).

We prove the occurrence of degenerate BT bifurcation in (2.3).

Theorem 2.3. Degenerate BT bifurcation of codimension 3 occur in (2.3) at equi-

librium point (1, 0), when (β, α1) = (ν + µ, d+ µ), i.e., (R1
0, R

2
0) = (1, 1).

Proof. The form of DFE points and their Jacobian matrix show that, when (R1
0, R

2
0) =

(1, 1) two DFE equilibrium points merge with each other and have a zero eigenvalue

with algebraic multiplicity two.
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We compute a2, b2, a3 and b3 in our system. First, we use x1 = s1 − 1, x2 = i, which

transforms (1, 0) to (0, 0), and (2.3) to the following system



















































dx1

dt
= (d+ µ)(R1

0 − 1)x1 + ((d+ µ)(R1
0 − 1) + (µ+ ν)(1−R2

0)−
α2

k
)x2+

+R1
0(d+ µ)x21 + (R1

0(d+ µ)− (µ+ ν)R2
0 −

α2

k
)x1x2 +

α2

k2
x22 −

α2

k3
x32 +

α2

k2
x1x

2
2+

+O(4)

dx2

dt
= (µ+ ν)(R2

0 − 1)x2 + (µ + ν)R2
0x1x2,

(2.7)

where O(4) means the linear combinations of the terms of the form xi1x
j
2 with i+j ≥

4.

Now by letting (R1
0, R

2
0) = (1, 1), and using the transformation y1 = x1, y2 = −α2

k
x2,

the system is modified as follows

(2.8)














dy1

dt
= y2 + (d+ µ)y21 + (1− k(d− ν)

α2
)y1y2 +

1

α2
y22 +

1

α2
2

y32 +
1

α2
y1y

2
2 +O(4)

dy2

dt
= (µ+ ν)y1y2.

Finally by using formulas in appendix B of [15], we obtain the following coefficients:

a2 = 0, b2 = 2(µ + d) + µ+ ν, a3 = −(µ+ ν)(d+ µ),

b3 =
1

2
(µ + ν)(1− k(d− ν)

α2
).

Since a2 = 0 and b2a3 6= 0, as it is mentioned in [2, 15], a degenerate BT bifurcation

of codim 3 occurs and (2.6) can be transformed by smooth coordinate changes and

time reparametrization to the form

(2.9)















dξ0

dt
= ξ1

dξ1

dt
= a3ξ

3
0 + b2ξ0ξ1 + b

′

3ξ
2
0ξ1 +O(||(ξ0, ξ1)||5),

where

b
′

3 = b3 −
3b2a4
5a3

= (1− k(d− ν)

α2
)(
2

5
ν − 1

5
µ− 3

5
d).

Now since a3 < 0 and b22 + 8a3 = (2(µ + d) − (µ + ν))2 > 0, the equilibrium point

has an elliptic sector.
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Studies show that if BT bifurcation occurs, a wide dynamic variation can occur

around the bifurcation values. Near the BT bifurcation values, we observe four

kinds of bifurcation including transcritical, saddle-node, Hopf and Homoclinic, and

the character of the equilibrium point will show stable focus, stable limit cycle,

Homoclinic loop, unstable focus, etc. See Fig. 8.8. in [16] , page 324.

Figure 3 shows the elliptic sector whose existence has been proved.

3. Endemic Equilibrium Point

In this section, we study the existence and the dynamical properties of the en-

demic equilibrium points, i.e., steady states of the model. Let us denote the endemic

equilibrium point by (s∗1, i
∗), i∗ 6= 0 implies:

(3.10) s∗1 =
ν + µ

β
=

1

R2
0

.

The relation s∗1 < 1 implies that only if R2
0 > 1, the endemic steady state exists.

By substituting this value, with some simple manipulation we result the following

equation:

µ− α1(
ν + µ

β
)(1− (

ν + µ

β
)− i∗)− α2(

ν + µ

β
)( i∗

i∗+k
) + d(1− (

ν + µ

β
)− i∗)−

µ(
ν + µ

β
) + νi∗ − β(

ν + µ

β
)i∗ = 0.

Finally we have the following equation

(3.11) F (i∗) = Ai∗2 +Bi∗ + C = 0.

Where

A = α1(ν + µ)− β(µ + d) = α1(ν + µ)(1−R∗
0),

B = k((ν+µ)(α1−β)+β(ν−d))+(µ+d)(β−ν−µ)+(ν+µ)(−α1−
α1

β
(ν+µ)−α2) =

(ν + µ)(kα1(1−R∗
0) + (µ+ d)(R2

0 −R1
0 − 1− 1

R∗
0

)− α2),

C = k((µ+d)(β−ν−µ)+(ν+µ)(−α1−
α1

β
(ν+µ))) = k(µ+d)(ν+µ)(R2

0−R1
0−1− 1

R∗
0

),

and R∗
0 =

R2
0

R1
0

.

we now study the existence and dynamical properties of the endemic steady states

of the system. In the following cases, there exists an endemic equilibrium point.

(1): A > 0, R2
0 > 1, and R1

0 > 1. In this case, R∗
0 < 1, hence F (0) = C < 0. Now the
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convex parabola F (i∗) has a unique positive root, and the system has the following

endemic equilibrium point

E2 = (s∗1, i
∗) = (

ν + µ

β
,
−B +

√
∆

2A
).

2) A < 0, C > 0. In this case, F (i∗) is a concave parabola with F (0) = C > 0. In

this case, the system has the following endemic equilibrium point

E2 = (s∗1, i
∗) = (

ν + µ

β
,
−B −

√
∆

2A
).

Now we study local stability of endemic equilibrium points.

Proposition 3.1. Let R∗
0 > 1, R2

0 > 1, and ν > d, then the endemic steady state is

locally asymptotically stable.

Proof. The Jacobian matrix of the system at the endemic equilibrium has the

following form

J(s1
∗, i∗) =





α1(2s
∗
1 − 1 + i∗)− α2(

i∗

i∗ + k
)− d− µ− βi∗ s∗1(α1 −

kα2

(i∗ + k)2
)− d+ ν − βs1

∗

βi∗ βs1
∗ − ν − µ





By using s1
∗ =

ν + µ

β
, we have

J2 = J(
ν + µ

β
, i∗) =





α1(2(
ν + µ

β
)− 1 + i∗)− α2(

i∗

i∗ + k
)− d− µ− βi∗

ν + µ

β
(α1 −

kα2

(i∗ + k)2
)− d− µ

βi∗ 0





The characteristic equation of this matrix is λ2 − pλ+ q = 0, in which

(3.12) p = Tr(J(s∗1, i
∗)) = α1(2(

ν + µ

β
)− 1 + i∗)− α2(

i∗

i∗ + k
)− d− µ− βi∗

(3.13) q = Det(J(s∗1, i
∗)) = βi∗(−(α1 −

kα2

(k + i∗)2
)(
ν + µ

β
) + d+ µ).

We know p < 0 and q > 0 are sufficient conditions for the local stability. But

(3.14)

p < 0

⇐⇒ α1(2(
ν + µ

β
) + i∗) < α1 + α2(

i∗

i∗ + k
) + d+ µ+ βi∗

⇐⇒ α1

β
(
ν + µ

µ+ d
) <

1

2
(

1

µ+ d
(α1(1− i∗) + αl(

i∗

i∗ + k
) + βi∗) + 1).
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And the first equation of (2.3) in endemic equilibrium is equivalent to

(3.15)
1

µ+ d
(α1(1− i∗) + α2(

i∗

i∗ + k
) + βi∗) + 1 =

µ+ α1s
∗
1
2 + d(1 − i∗) + νi∗

s∗1(µ + d)
.

It follows from (3.14) and (3.15) that

(3.16)

p < 0

⇐⇒ β

α1
(
µ+ d

µ+ ν
) >

2(ν + µ)(d+ µ)

β(µ + α1
(ν + µ)2

β2
+ d(1− i∗) + νi∗)

⇐⇒ R∗
0 >

2(µ + ν)(µ + d)

β(µ+
(µ+ ν)(µ + d)

βR∗
0

+ d(1 − i∗) + νi∗)

⇐⇒ R∗
0β(µ + d+ ν)

2(µ + ν)(µ+ d)
>

1

2

⇐⇒ R∗
0R

2
0 >

µ+ d

µ+ d+ i∗(ν − d)
.

On the other hand

(3.17)

q > 0

⇐⇒ (
1

R∗
0

− 1)
R2

0(µ+ d)(i + k)2

α2k
< 1.

Furthermore, we obtain the following results.

Proposition 3.2. Let R∗
0 > 1, R1

0 > 1, and β > α1, then the endemic steady state

is locally asymptotically stable.

Proof. Since R1
0 > 1, we have

(3.18) α1(2
ν + µ

β
− 1)− d− µ = (d+ µ)(

2

R∗
0

−R1
0 − 1) ≤ 1−R1

0 < 0

From (3.12) and (3.17) we conclude that the above relation, α1 < β and R∗
0 > 1,

implies p < 0 and q > 0, hence the endemic steady state is locally asymptotically

stable. �

Proposition 3.3. Let R2
0 ≥ 2, R1

0 < 1, β < α1 and ν < d, then the endemic steady

state is locally asymptotically stable.

Proof. It follows from these assumptions, R∗
0 > 1, α1i

∗ ≤ α1 < d + µ and

2ν+µ
β

− 1 < 0, hence p < 0 and q > 0 which implies that the endemic equilib-

rium point is locally asymptotically stable.
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3.1. Global stability of the endemic equilibrium point Now we study global

asymptotic stability of the steady states.

Theorem 3.1. Suppose R1
0 < 1 and R2

0 > 1, then the endemic steady state is global

asymptotic stable with respect to Ω, when α1 < β, or ν > d. Furthermore, if α1 > β

and ν < d, and R1
0 < 1, R2

0 ≥ 2, the endemic steady state is global asymptotic stable.

Proof. We rewrite the system (2.3) in terms of R1
0 and R2

0, as follows

(3.19)














ds1

dt
= (d+ µ)(1− s1 − i)(1−R1

0s1) + (µ+ ν)i(1 −R2
0s1)− α2s1(

i

i+ k
)

di

dt
= (µ+ ν)i(R2

0s1 − 1)

Now if we use B(s1, i) =
1
i
as a Dulac function, we have:

div(Bf,Bg) =
∂(Bf)

∂(s1)
+

∂(Bg)

∂(i)
=

= −α2(
1

i+ k
)− (µ + ν)R2

0 +
d+ µ

i
((R1

0s1 − 1)−R1
0(1− s1 − i))

which is negative in the set {(s1, i) ∈ Ω : i > 0} if R1
0 < 1. Now by integration

we have, i(t) = i(0)e
∫
t

0
(βs1(τ)−ν−µ)dτ . Hence the line i = 0 has positive invariance,

which implies that the system has no cycle provided R1
0 < 1.

On the other hand, by applying R2
0 > 1 and R1

0 < 1 in (3.12) and (3.13), we have

q > 0 and

p < α1i
∗ − α2(

i∗

i∗ + k
)− βi∗,

which is negative when α1 < β. Hence, in this case, the endemic steady state

is locally stable and Poincare-Bendixon theorem implies the global stability with

respect to Ω. If ν ≥ d, as indicated in proposition 3.2, the endemic point is locally

stable, and the Poincare-Bendixon theorem implies its global stability. Proposition

3.3 concludes the last case. �

In Figure 4 we present the phase portrait in a set of parameters with R1
0 < 1, R2

0 > 1

and α1 < β.

4. Numerical Explorations

In this part, we draw the phase diagram in several modes using maple software,

so that the obtained analytical results can be seen geometrically. We present three

cases.
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In many diseases, for example, sexually transmitted infections (STIs), such as chlamy-

dia, gonorrhea, genital warts,..., it is possible to inform about the spreading disease

and its consequences on personal health or social and economic issues through tar-

geted campaigns or through public media as well as person-to-person meetings.

These warnings cause the cautious behavior of people in the society in different

ways. For example, using condoms, having fewer sexual partners, using vaccines...

are examples of such precautions. In diseases that follow the SIS model, for example

gonorrhea which is an STI, the extended SIS model introduced in this article can

be used to analyze the effect of such information on disease dynamics.

In the case of Chlamydia, as it is mentioned in [14], the average infectious period

for individuals that are unaware and do not seek treatment early is found to be 26

weeks, and for individuals that seek treatment early, mainly due to being aware, the

average infectious period is around 13 weeks, hence we choose the units of time to

be in term of weeks.

Case 1. In the first case, we draw the phase diagram, in Figure 2, when trivial

DFE or DFE are globally asymptotically stable as it is proved in Th. 2.2. We use

two set of parameters, (a): α2 = α1 = β = ν = µ = d = 0.5, k = 1.2, in which,

R2
0 < 1, R1

0 < 1. And (b): α2 = α1 = β = ν = 0.5, d = µ = 0.1666, k = 1.2, with

R2
0 < 1 and R1

0 > 1.

Case 2. In this case, we draw the phase portrait of the system and the com-

ponents of the solutions when (R1
0, R

2
0) = (1, 1), in Figure 3, to explore the elliptic

sector whose existence proved in Th. 2.3. We use the following set of parameters,

α2 = 0.15, α1 = 0.5, ν = 0.5, µ = 0.25, d = 0.25, β = 0.75, k = 1.02 and initial values

(s1(0), i(0)) = (1.1, 0.005). At this parameter values we have, R1
0 = R2

0 = 1. Picture

(a) shows the phase portrait of the system, (b) shows th graph of the component i(t)

of the solution, and (c) shows the graph of s1(t). The graph of i(t), i.e., the number of

infected individuals in time t, of this trajectory, shows the occurrence of an epidemy.

Case 3. In the third case, we draw the phase diagram, in Figure 4, to see the

global asymptotic stabiity of endemic equilibrium point, proved in Th. 3.1. We use

the following set of parameters, α2 = α1 = ν = µ = d = 0.1111, β = 0.9, k = 1.2,

with R1
0 < 1 and R2

0 > 1.
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(a) (b)

Figure 2. The phase portrait of the system in (a) shows that the
trivial DFE is globally asymptotically stable and (b) shows that DFE
is globally asymptotically stable.

5. Conclusion and Discussion

In this paper, the SIS epidemic model was improved by considering the effect of

fear of contracting the disease at the time of outbreak and adopting cautious behav-

iors. It is observed that, the proposed model has two DFE equilibrium points, and

we studied their local and global stability. We also computed the basic reproduc-

tion number of the model, which has the form, R0 = max{R1
0, R

2
0}, with R1

0 = α1

d+µ

and R2
0 = β

µ+ν
. Our analysis showed that this model, despite its simplicity, has a

complex dynamic. For example, we showed that when (R1
0, R

2
0) = (1, 1), two DFE

equilibrium points are merged, and a degenerate Bogdanov-Takens bifurcation of

codimension three occurs. The occurrence of this bifurcation is a sign of difficulty

in the elimination of infection when (R1
0, R

2
0) is close to (1, 1). In this case, we have

shown that the system has elliptic sector and its diagram shows the occurrence of

an outbreak.

Furthermore, we studied endemic steady states of the model and its dynamic prop-

erties, such as locally asymptotically stability and global asymptotic stability.

Our study showed that the relationship between awareness rate and infection rate

could determine the dynamics of the system in various cases. For example, when
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(a) (b)

(c)

Figure 3. (a) shows the phase portrait of the system, which is an
elliptic sector. (b) and (c) shows the components of this solution in
term of time.

the awareness rate is less than the infection rate, i.e., α1 < β, the disease becomes

endemic, i.e., the endemic equilibrium is global asymptotic stable when R1
0 < 1 and

R2
0 > 1.

The extension done on the SIS model, in other models such as SIR, SEIR,..., can

be designed and analyzed. For example the SIR model can be extended with the

following diagram and S1S2IR system of equations,
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Figure 4. The phase portrait shows the global asymptotic stability
of the endemic equilibrium point.

S1 I

S2

R

α1
S1S2
N

α2
S1I

I+K

dS2

β
S1I

N
γI

−→
A

↓µS1
↓µI

↑µS2

↓µR















































dS1

dt
= A− α1(

S2

N
)− α2S1(

I

I +K
) + dS2 − µS1 − βS1(

I

N
)

dS2

dt
= α2S1(

I

I +K
) + α1(

S2

N
)− dS2 − µS2

dI

dt
= βS1(

I

N
)− γI − µI

dR

dt
= γI − µR

The analysis of this system from different point of views, such as stability, bifurca-

tions and numerical simulations is a research question.
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