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ON THE ROBUSTNESS OF CONTINUOUS TRAJECTORIES
OF THE NONLINEAR CONTROL SYSTEM DESCRIBED

BY AN INTEGRAL EQUATION

Nesir Huseyin a, ∗ and Anar Huseyin b

Abstract. In this paper the control system described by Urysohn type integral
equation is studied. It is assumed that control functions are integrally constrained.
The trajectory of the system is defined as multivariable continuous function which
satisfies the system’s equation everywhere. It is shown that the set of trajectories is
Lipschitz continuous with respect to the parameter which characterizes the bound of
the control resource. An upper estimation for the diameter of the set of trajectories
is obtained. The robustness of the trajectories with respect to the fast consumption
of the remaining control resource is discussed. It is proved that every trajectory
can be approximated by the trajectory obtained by full consumption of the control
resource.

1. Introduction

The control system described by Urysohn type integral equation

(1.1) x(ω) = f(ω, x(ω)) +
∫

E
F (ω, s, x(s), u(s))ds

is considered, where ω ∈ Ω, x(ω) ∈ Rn is the state vector, u(s) ∈ Rm is the control
vector, Ω ⊂ Rk, E ⊂ Rk are compact sets, E ⊆ Ω.

Note that integral equations are adequate tool for description of the behavior
of different processes arising in theory and applications. One of the outstanding
scientist of the XX century W. Heisenberg in his well known book ”Physics and
Philosophy” underlines the importance of the integral equations by the following
words: ”The final equation of motion for matter will probably be some quantized
nonlinear wave equation... This wave equation will probably be equivalent to rather
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complicated sets of integral equations...” (see, [4], p.68). The integral equations are
often used for solution’s concept extension of initial and boundary value problems
for ordinary and partial differential equations. Separately, let us express that the
theory of the integral equations is considered one of the origin of the contemporary
functional analysis (see, [5], chapter 1, p.2).

For given p > 1 and r ≥ 0 we denote

(1.2) Up,r =
{

u(·) ∈ Lp

(
E;Rm

)
: ‖u(·)‖p ≤ r

}

which is called the set of admissible control functions and every u(·) ∈ Up,r is said to
be an admissible control function, where Lp (E;Rm) is the space of Lebesgue measur-

able functions u(·) : E → Rm such that ‖u(·)‖p < ∞, ‖u(·)‖p =
(∫

E
‖u(s)‖pds

)1/p

,

‖·‖ denotes the Euclidean norm.
It is obvious that the set of admissible control functions Up,r is the closed ball

with radius r and centered at the origin in the space Lp (E;Rm).
In general, integral constraint on the control functions is inevitable, if the control

resource of the system is exhausted by consumption, such as energy, fuel, finance,
etc. (see, e.g., [1, 3, 8, 10])). For example, the motion of the flying object with
rapidly changing mass is described by a control system with integral constraint
on the control functions (see, e.g., [1, 10]). Different topological properties and
approximate construction methods of the set of trajectories of the control systems
with integral constraints on the control functions are discussed in [6, 7, 8] (see the
references also therein).

It is assumed that the functions given in system (1.1) satisfy the following con-
ditions:

1.A. The functions f(·) : Ω × Rn → Rn and F (·) : Ω × E × Rn × Rm → Rn are
continuous;

1.B. There exist γ0 ∈ [0, 1), γ1 ≥ 0, κ1 ≥ 0, γ2 ≥ 0, κ2 ≥ 0, γ3 ≥ 0 and κ3 ≥ 0
such that

‖f(ω, x1)− f(ω, x2)‖ ≤ γ0 ‖x1 − x2‖
is satisfied for every (ω, x1) ∈ Ω× Rn and (ω, x2) ∈ Ω× Rn and

‖F (ω1, s, x1, u1)− F (ω2, s, x2, u2)‖ ≤ [γ1 + κ1(‖u1‖+ ‖u2‖)] ‖ω1 − ω2‖
+ [γ2 + κ2(‖u1‖+ ‖u2‖)] ‖x1 − x2‖+ [γ3 + κ3(‖x1‖+ ‖x2‖)] ‖u1 − u2‖

for every (ω1, s, x1, u1) ∈ Ω× E × Rn × Rm and (ω2, s, x2, u2) ∈ Ω×E × Rn × Rm;
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1.C. There exist p > 1 and r∗ > 0 such that the inequality

γ0 + κ2µ(E) + 2γ∗r∗[µ(E)](p−1)/p) < 1

is satisfied where γ∗ = max{γ1, γ2, γ3}, µ(E) stands for the Lebesgue measure of the
set E.

If the function (ω, s, x, u) → F (ω, s, x, u), (ω, s, x, u) ∈ Ω × E × Rn × Rm is
Lipschitz continuous with respect to (ω, x, u), then it satisfies the condition 1.B.

Let u(·) ∈ Up,r. A continuous function x(·) : Ω → Rn satisfying the integral
equation (1.1) for every ω ∈ Ω, is said to be a trajectory of the system (1.1) generated
by the admissible control function u(·) ∈ Up,r. The set of trajectories of the system
(1.1) generated by all admissible control functions u(·) ∈ Up,r is denoted by symbol
Zp,r and is called the set of trajectories of the system (1.1).

The paper is organized as follows. In Section 2 the basic properties of the system’s
trajectory are presented which are used in following arguments. In Section 3 it is
proved that the set of trajectories Zp,r is Lipschitz continuous with respect to r

(Theorem 3.1). In Section 4 an upper evaluation for the diameter of the set of
trajectories is given (Theorem 4.1). In section 5 the robustness of the system’s
trajectory with respect to the fast consumption of the remaining control resource is
established (Theorem 5.1). It is proved that every trajectory can be approximated
by the trajectory obtained by full consumption of the control resource (Theorem
5.2).

2. Basic Properties of the Trajectories

We set

L(p, r) = γ0 + κ2µ(E) + 2γ∗r[µ(E)](p−1)/p)(2.1)

From condition 1.C it follows that

L(p, r∗) < 1.(2.2)

Then there exist α∗ > 0 such that L(p, r) < 1 for every r ∈ [0, r∗ + α∗]. Denote

L∗(p) = γ0 + κ2µ(E) + 2γ∗(r∗ + α∗)[µ(E)](p−1)/p)(2.3)

From (2.1), (2.2) and (2.3) it follows that

0 ≤ L∗(p) < 1 , L∗(p)− γ0 > 0 .(2.4)

From now on, it will be assumed that r ∈ [0, r∗ + α∗].
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For given ω ∈ Ω we set

(2.5) Zp,r(ω) = {x(ω) ∈ Rn : x(·) ∈ Zp,r} .

The set Zp,r(ω) is close to the attainable set notion used in control and dynamical
systems theory and consists of points to which arrive the trajectories of the system
at ω (see, e.g., [2, 11]).

From the conditions 1.A-1.C it follows the validity of the following propositions.

Proposition 2.1. Every admissible control function u(·) ∈ Up,r generates a unique
trajectory x(·) ∈ C(Ω;Rn) of the system (1.1) where C(Ω;Rn) is the space of con-
tinuous functions x(·) : Ω → Rn with norm ‖x(·)‖C = max{‖x(ω)‖ : ω ∈ Ω}.

Proposition 2.2. There exists g∗ > 0 such that the inequality

‖x(·)‖C ≤ g∗

is satisfied for every x(·) ∈ Zp,r and r ∈ [0, r∗ + α∗].

Proposition 2.3. The set of trajectories Zp,r is a precompact subset of the space
C(Ω;Rn).

The proofs of the Proposition 2.1, Proposition 2.2 and Proposition 2.3 are similar
to the proofs of the Theorem 3.1, Theorem 4.1 and Theorem 5.1 of [6] respectively.

Proposition 2.4. Let u1(·) ∈ Up,r1, u2(·) ∈ Up,r2 where r1 ∈ [0, r∗ + α∗] and
r2 ∈ [0, r∗ + α∗]. Then∫

E
[γ2 + κ2(‖u1‖+ ‖u2‖)] ds ≤ L∗(p)− γ0

where L∗(p) is defined by (2.3).

The proof of the proposition follows from Hölder’s inequality.
For given metric space (Y, dY (·, ·)) the Hausdorff distance between the sets S ⊂ Y

and W ⊂ Y is denoted by hY (S, W ) and defined as

hY (S,W ) = max{sup
x∈S

dY (x,W ), sup
y∈W

dY (y, S)}

where dY (x,W ) = inf{dY (x, y) : y ∈ W}.
Let b(Y ) be a family of all nonempty bounded subsets of given metric space

(Y, dY (·, ·)). By virtue of [2, 9] we have that (b(Y ), hY (·, ·)) is a pseudometric
space where hY (·, ·) stands for Hausdorff distance between the subsets of the space
(Y, dY (·, ·)).
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Now, let (Y, dY (·, ·)) and (T, dT (·, ·)) be metric spaces, Φ(·) : Y → T be a given
set valued map and y∗ ∈ Y . If hT (Φ(y), Φ(y∗)) → 0 as y → y∗, then the map Φ(·) is
called continuous at y∗.

If there exists R > 0 such that

hT (Φ(y1), Φ(y2)) ≤ R · dY (y1, y2)

for every y1 ∈ Y and y2 ∈ Y , then the map Φ(·) is called Lipschitz continuous with
Lipschitz constant R.

By symbol hn(A,U) we denote the Hausdorff distance between the sets A ⊂ Rn

and U ⊂ Rn, and by symbol hC(V,Q) we denote the Hausdorff distance between
the sets V ⊂ C (Ω;Rn) and Q ⊂ C (Ω;Rn).

Proposition 2.5. For each fixed r ∈ [0, r∗+α∗] the set valued ω → Zp,r(ω), ω ∈ Ω,
is continuous, i.e. hn(Zp,r(ω),Zp,r(ω∗)) → 0 as ω → ω∗ for every fixed ω∗ ∈ Ω where
the set Zp,r(ω) is defined by (2.5).

The validity of the Proposition 2.5 can be specified analogously to the proof of
the Proposition 5.2 from [6].

3. Lipschitz Continuity of the set of Trajectories with respect
to the Control Resource Bound

In this section it will be shown that the set valued map r → Zp,r, r ∈ [0, r∗+α∗],
is Lipschitz continuous. Denote

(3.1) BC(1) = {x(·) ∈ C ([t0, θ];Rn) : ‖x(·)‖C ≤ 1} ,

(3.2) R0 =
(κ3 + 2g∗γ3)[µ(E)](p−1)/p

1− L∗(p)

where L∗(p) is defined by (2.3), g∗ is given in Proposition 2.2.

Theorem 3.1. The set valued map r → Zp,r, r ∈ [0, r∗+α∗] is Lipschits continuous
with Lipschitz constant R0, i.e.

hC(Zp,r1 ,Zp,r2) ≤ R0 · |r1 − r2|
for every r1 ∈ [0, r∗ + α∗] and r2 ∈ [0, r∗ + α∗] where R0 is defined by (3.2).

Proof. Without loss of generality we assume that r1 < r2 which implies

(3.3) Zp,r1 ⊂ Zp,r2 .
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Choose an arbitrary x∗(·) ∈ Zp,r2 generated by the control function u∗(·) ∈ Up,r2 .
Define a new control function v∗(·) : E → Rm, setting

(3.4) v∗(s) =
r1

r2
u∗(s) , s ∈ E .

Since u∗(·) ∈ Up,r2 , then from (3.4) it follows that v∗(·) ∈ Up,r1 . Let y∗(·) :
Ω → Rn be the trajectory of the system (1.1) generated by the control function
v∗(·) ∈ Up,r1 . It is obvious that y∗(·) ∈ Zp,r1 . From (1.1), (3.4), condition 1.B,
Proposition 2.2, Proposition 2.4, inclusion u∗(·) ∈ Up,r2 and Hölder’s inequality we
have

‖x∗(ω)− y∗(ω)‖ ≤ γ0‖x∗(ω)− y∗(ω)‖+
∫

E
[κ2 + γ2(‖u∗(s)‖+ ‖v∗(s)‖)]

· ‖x∗(s)− y∗(s)‖ds +
∫

E
[κ3 + γ3(‖x∗(s)‖+ ‖y∗(s)‖)] · ‖u∗(s)− v∗(s)‖ds

≤ γ0‖x∗(·)− y∗(·)‖C +
∫

E
[κ2 + γ2(‖u∗(s)‖+ ‖v∗(s)‖)] ds

·max{‖x∗(s)− y∗(s)‖ : s ∈ E}+ (κ3 + 2γ3g∗) ·
∫

E
‖u∗(s)− r1

r2
u∗(s)‖ds

≤ γ0‖x∗(·)− y∗(·)‖C + (L∗(p)− γ0) · ‖x∗(·)− y∗(·)‖C

+ (κ3 + 2γ3g∗)
|r1 − r2|

r2

∫

E
‖u∗(s)‖ds

≤ L∗(p) · ‖x∗(·)− y∗(·)‖C + (κ3 + 2γ3g∗) · [µ(E)](p−1)/pr2 · |r1 − r2|
r2

= L∗(p) · ‖x∗(·)− y∗(·)‖C + (κ3 + 2γ3g∗) · [µ(E)](p−1)/p · |r1 − r2|

for every ω ∈ Ω and hence

‖x∗(·)− y∗(·)‖C ≤ L∗(p) · ‖x∗(·)− y∗(·)‖C + (κ3 + 2γ3g∗) · [µ(E)](p−1)/p · |r1 − r2| .

From (2.4), (3.2) and the last inequality we obtain

(3.5) ‖x∗(·)− y∗(·)‖C ≤ (κ3 + 2γ3g∗) · [µ(E)](p−1)/p

1− L∗(p)
· |r1 − r2| = R0 · |r1 − r2| .

So, we have that for arbitrarily chosen x∗(·) ∈ Zp,r2 there exists y∗(·) ∈ Zp,r1 such
that the inequality (3.5) holds which implies that

(3.6) Zp,r2 ⊂ Zp,r2 + R0|r1 − r2| ·BC(1)

where BC(1) is defined by (3.1).
The inclusions (3.3) and (3.6) complete the proof. ¤
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4. Diameter of the Set of Trajectories

Let (Y, dY (·, ·)) be a metric space and G ⊂ Y . The diameter of the set G is
denoted by diam(G) and is defined as

diam(G) = sup{dY (x, g) : x ∈ G, g ∈ G} .

Theorem 4.1. The inequality

diam(Zp,r) ≤ 2(κ3 + 2γ3g∗)r[µ(E)](p−1)/p

1− L∗(p)

is verified where g∗ is defined in Proposition 2.2, L∗(p) is defined by (2.3).

Proof. Let x(·) ∈ Zp,r and z(·) ∈ Zp,r be arbitrarily chosen trajectories generated
by the control functions u(·) ∈ Up,r and v(·) ∈ Up,r respectively. Then from (1.1),
condition 1.B, Proposition 2.2, Proposition 2.4 and Hölder’s inequality we have

‖x(ω)− z(ω)‖ ≤ γ0‖x(ω)− z(ω)‖+
∫

E
[κ2 + γ2(‖u(s)‖+ ‖v(s)‖)]

·max{‖x(s)− y(s)‖ : s ∈ E}+ (κ3 + 2γ3g∗) ·
∫

E
‖u(s)− v(s)‖ds

≤ γ0‖x(·)− z(·)‖C + (L∗(p)− γ0) · ‖x(·)− y(·)‖C

+ 2 (κ3 + 2γ3g∗) r · [µ(E)](p−1)/p

= L∗(p) · ‖x∗(·)− y∗(·)‖C + 2 (κ3 + 2γ3g∗) r · [µ(E)](p−1)/p

for every ω ∈ Ω and hence

‖x(·)− z(·)‖C ≤ L∗(p) · ‖x∗(·)− y∗(·)‖C + 2 (κ3 + 2γ3g∗) r · [µ(E)](p−1)/p .

From the last inequality and (2.4) we conclude that

(4.1) ‖x(·)− z(·)‖C ≤ 2(κ3 + 2γ3g∗)r[µ(E)](p−1)/p

1− L∗(p)
.

Since x(·) ∈ Zp,r and z(·) ∈ Zp,r are arbitrarily chosen trajectories, then from
(4.1) we have the proof of the theorem. ¤

5. Robustness of the Trajectories

In this section the robustness of a trajectory of the system (1.1) with respect to
the fast consumption of the remaining control resource will be discussed.



198 Nesir Huseyin & Anar Huseyin

Theorem 5.1. Let ε > 0 be a given number, x(·) ∈ Zp,r be a trajectory of the system
(1.1) generated by the control function u(·) ∈ Up,r and let ‖u(·)‖p = r0 < r. Assume
that E∗ ⊂ E is the Lebesgue measurable set, the control function w(·) : E → Rm is
defined

w(s) =
{

u(s) if s ∈ E \ E∗ ,
u∗(s) if s ∈ E∗

such that ‖w(·)‖p = r and let y(·) : Ω → Rm be the trajectory of the system (1.1)
generated by the control function w(·) ∈ Up,r. If

(5.1) µ(E∗) ≤
[

1− L∗(p)
2 (κ3 + 2γ∗g∗) r

· ε
]p/(p−1)

then

‖x(·)− y(·)‖C ≤ ε

where g∗ is defined in Proposition 2.2, L∗(p) is defined by (2.3).

Proof. According to (1.1), condition 1.B, inclusions u(·) ∈ Up,r, w(·) ∈ Up,r, Propo-
sition 2.2, Proposition 2.4 and Hölder’s inequality, we have

‖x(ω)− y(ω)‖ ≤ γ0‖x(·)− y(·)‖C +
∫

E
[κ2 + γ2(‖u(s)‖+ ‖w(s)‖)] ds

·max{‖x(s)− y(s)‖ : s ∈ E}+ (κ3 + 2γ3g∗) ·
∫

E∗
‖u(s)− w(s)‖ds

≤ γ0‖x(·)− y(·)‖C + (L∗(p)− γ0) · ‖x(·)− y(·)‖C

+ 2 (κ3 + 2γ3g∗) r · [µ(E∗)](p−1)/p

= L∗(p) · ‖x(·)− y(·)‖C + 2 (κ3 + 2γ3g∗) r · [µ(E∗)](p−1)/p

for every ω ∈ Ω and consequently

‖x(·)− y(·)‖C ≤ L∗(p) · ‖x(·)− y(·)‖C + 2 (κ3 + 2γ3g∗) r · [µ(E∗)](p−1)/p .

From the last inequality and (2.4) we conclude that

‖x(·)− z(·)‖C ≤ 2(κ3 + 2γ3g∗)r[µ(E∗)](p−1)/p

1− L∗(p)
.

The last inequality and (5.1) imply that

‖x(·)− z(·)‖C ≤ 2(κ3 + 2γ3g∗)r
1− L∗(p)

[µ(E∗)](p−1)/p ≤ ε .

The proof is completed. ¤
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Denote
Vp,r =

{
u(·) ∈ Lp

(
E;Rm

)
: ‖u(·)‖p = r

}

and let Z∗p,r be the set of trajectories of the system (1.1) generated by all admissible
control functions u(·) ∈ Vp,r.

Theorem 5.2. The equality cl(Zp,r) = cl(Z∗p,r) is satisfied where cl denotes the
closure of a set.

Proof. Since Z∗p,r ⊂ Zp,r then we have

(5.2) cl(Z∗p,r) ⊂ cl(Zp,r) .

Let ν be an arbitrarily chosen number, E∗ ⊂ E be the Lebesgue measurable set
such that

(5.3) µ(E∗) ≤
[

1− L∗(p)
2 (κ3 + 2γ∗g∗) r

· ν
]p/(p−1)

where g∗ is defined in Proposition 2.2, L∗(p) is defined by (2.3).
Now, let us choose an arbitrary trajectory x(·) ∈ Zp,r generated by the control

function u(·) ∈ Up,r and let ‖u(·)‖p = r0 < r. Suppose that
∫
E\E∗ ‖u(s)‖pds = rp

1.
It is obvious that r1 ≤ r0. Define new control function v∗(·) : E → Rm, setting

v∗(s) =





u(s) if s ∈ E \E∗ ,[
rp − rp

1

µ(E∗)

]1/p

· e∗ if s ∈ E∗
(5.4)

where e∗ ∈ Rm is an arbitrary vector such that ‖e∗‖ = 1. It is not difficult to verify
that ‖v∗(·)‖p = r and hence v∗(·) ∈ Vp,r. Let z∗(·) : E → Rm be the trajectory of
the system (1.1) generated by the control function v∗(·) ∈ Vp,r. Then z∗(·) ∈ Z∗p,r

and from (5.3), (5.4) and Theorem 5.1 it follows that ‖x(·) − z∗(·)‖C ≤ ν . Since
z∗(·) ∈ Z∗p,r and ν > 0 are arbitrarily chosen, then we obtain that x(·) ∈ cl(Z∗p,r)
which implies that Zp,r ⊂ cl (Z∗p,r). This inclusion yields

(5.5) cl(Zp,r) ⊂ cl(Z∗p,r) .

(5.2) and (5.5) complete the proof. ¤

Conclusion

The Lipschitz continuity of the set of trajectories allows to establish an error
estimation for the set of trajectories if there is an inaccuracy in determining the
upper bound of the total control resource. Evaluation of the diameter permits to
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estimate the set of trajectories in general. From the robustness of the trajectory
with respect to the remaining control resource it follows that if you have a needless
control resource and you want to get rid of it, then spending the remaining control
resource on the domain with sufficiently small measure, you will obtain a small
deviation from the initial trajectory. This also illustrates that the consuming the
control resource with big quants on the domains with sufficiently small measures is
not effective way to change the system’s trajectory.
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