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CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND
CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH

VECTOR-VALUED CONDITIONING FUNCTION

Ae Young Ko a and Jae Gil Choi b, ∗

Abstract. In this paper, we use a vector-valued conditioning function to define
a conditional Fourier-Feynman transform (CFFT) and a conditional convolution
product (CCP) on the Wiener space. We establish the existences of the CFFT and
the CCP for bounded functionals which form a Banach algebra. We then provide
fundamental relationships between the CFFTs and the CCPs.

1. Introduction

Let (C0[0, T ],mw) denote the Wiener space, where C0[0, T ] is the space of real
valued continuous functions x on [0, T ] such that x(0) = 0, and mw is the Wiener
measure. In [4, 5, 9, 13], the study of the conditional Wiener and the conditional
Feynman integrals given finite dimensional conditioning functions depending on time
parameters were performed. The concepts of the CFFT and the CCP were intro-
duced by Park and Skoug in [11]. The structure of the CFFT and the CCP are
based on the Feynman integral. In [11], Park and Skoug studied certain relation-
ships between CFFT, Tq(F |X), and the CCP, (F ∗G|X)q for functionals F and G

on C0[0, T ] with the one-dimensional conditioning function X : C0[0, T ] → R de-
fined by X(x) =

∫ T
0 h(s)dx(s) with a nonzeo function in L2[0, T ], where the integral∫ T

0 h(s)dx(s) means a stochastic integral.
In this paper, we study fundamental relationships which exist between the CFFT

and the CCP for functionals on the Wiener space C0[0, T ]. But we use a vector-
valued conditioning function Xn : C0[0, T ] → Rn defined by Xn(x) = (

∫ T
0 ej(s)x(s),

. . . ,
∫ T
0 en(s)x(s)) where {e1, . . . , en} is an orthogonal set of functions in L2[0, T ].
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2. Preliminaries

In this section, we introduce the concepts of the CFFT and the CCP for func-
tionals on the complete Wiener measure space (C0[0, T ],W(C0[0, T ]),mw), where
W(C0[0, T ]) denotes the σ-field of all Wiener measurable subsets. The definitions
are based on the concept of the conditional Wiener integral associated with a vector-
valued conditioning function.

We denote the Wiener integral of a Wiener integrable functional F by

E[F ] ≡ Ex[F (x)] =
∫

C0[0,T ]
F (x)dmw(x),

and for u ∈ L2[0, T ] and x ∈ C0[0, T ], we let 〈u, x〉 =
∫ T
0 u(t)dx(t) denote the

Paley–Wiener–Zygmund (PWZ) stochastic integral [6, 7, 8]. It is well-known that
for each v ∈ L2[0, T ], the PWZ integral 〈v, x〉 exists for mw-a.e. x ∈ C0[0, T ] and
is a Gaussian random variable with mean 0 and variance ‖v‖2

2 as a functional of
x ∈ C0[0, T ]. If {α1, . . . , αn} is an orthogonal set of functions in L2[0, T ], then the
random variables, {〈αj , x〉}n

j=1, are independent.
Let X be an Rn-valued measurable function and let Y be a C-valued integrable

function on (C0[0, T ],W(C0[0, T ]),mw). Let F(X) denote the σ-field generated by
X. Then by the definition, the conditional expectation of Y given F(X), written
E(Y |X), is any real valued F(X)−measurable function on C0[0, T ] such that

∫

A
Y (x)dmw(x) =

∫

A
E(Y |X)(x)dmw(x) for A ∈ F(X).

It is well known that there exists a Borel measurable and PX−integrable function
ψ on (Rn,B(Rn), PX) such that E(Y |X) = ψ ◦ X, where B(Rn) denotes the Borel
σ-field of Borel subsets in Rn and PX is the probability distribution of X defined by
PX(U) = mw(X−1(U)) for U ∈ B(Rn). The function ψ(~ξ), ~ξ ∈ Rn is unique up to
Borel null sets in Rn. Following Tucker [12] and Yeh [13], the function ψ(~ξ), written
E(Y |X = ~ξ), is called the conditional Wiener integral of Y given X.

Let G = {e1, . . . , en} be an orthonormal set of functions in L2[0, T ]. For each
j ∈ {1, . . . , n}, let γj(x) = 〈ej , x〉, and let βj(t) =

∫ t
0 ej(s)ds for t ∈ [0, T ]. Then

the stochastic PWZ integrals {γ1(x), . . . , γn(x)} form a set of independent stan-
dard Gaussian random variables on C0[0, T ] with Ex[x(t)γj(x)] = βj(t) for all
j ∈ {1, . . . , n}.
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Given an orthonormal set G = {e1, . . . , en} of functions in L2[0, T ], let XG :
C0[0, T ] −→ Rn be defined by

(2.1) XG(x) = (〈ej , x〉, . . . , 〈en, x〉) = (γ1(x), . . . , γn(x)).

Define a projection map PG from L2[0, T ] into SpanG by

PGv =
n∑

j=1

(v, ej)2ej ∈ SpanG

where (·, ·)2 denotes the inner product on the Hilbert space L2[0, T ].
For each x ∈ C0[0, T ] and ~ξ = (ξ1, . . . , ξn) ∈ Rn, let

xG = 〈PGI[0,t], x〉 =
n∑

j=1

γj(x)βj and ~ξG =
n∑

j=1

ξj(ej , I[0,t])2 =
n∑

j=1

ξjβj ,

where I[0,t] denotes the indicator function of the interval [0, t].
In [10], Park and Skoug proved the facts that the process {x(t)−xG(t), 0 ≤ t ≤ T}

and the Gaussian random variable γj(x) are stochastically independent for each
j ∈ {1, . . . , n}, and that the processes {x(t)− xG(t), 0 ≤ t ≤ T} and {xG(t), 0 ≤ t ≤
T} are also stochastically independent. Using these basic results, Park and Skoug
established the following evaluation formula to express conditional Wiener integrals
in terms of ordinary Wiener integrals.

Theorem 2.1 ([10]). Let F ∈ L1(C0[0, T ]). Then

(2.2) E(F |XG = ~ξ) = Ex

[
F

(
x−

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

)]

for a.e. ~ξ ∈ Rn.

3. Conditional Fourier-Feynman Transform and Conditional
Convolution Product given Rn-valued Conditioning Function

In order to define the CFFT and the CCP, we need the concept of the scale-
invariant measurability on the Wiener space C0[0, T ]. A subset B of C0[0, T ] is
called a scale-invariant measurable (SIM) set if ρB ∈ W(C0[0, T ]) for all ρ > 0,
and an SIM set N is called a scale-invariant null set if mw(ρN) = 0 for all ρ > 0.
A property which holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (SI-a.e.). A functional F is said to be SIM provided F
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is defined on an SIM set and F (ρ · ) is W(C0[0, T ])-measurable for every ρ > 0. For
more detailed studies of the scale-invariant measurability, see [2].

Let C+ = {λ ∈ C : Re(λ) > 0} and let C̃+ = {λ ∈ C \ {0} : Re(λ) ≥ 0}. Let XG :
C0[0, T ] → Rn be given by (2.1) and let F be a C-valued SIM functional such that
the Wiener integral Ex[F (λ−1/2x)] exists as a finite number for all λ > 0. For λ > 0
and ~ξ in Rn, let JF (λ; ~ξ) = E(F (λ−1/2 · )|XG(λ−1/2 · ) = ~ξ) denote the conditional
Wiener integral of F (λ−1/2 · ) given XG(λ−1/2 · ). If for a.e. ~ξ ∈ Rn, there exists a
function J∗F (λ; ~ξ), analytic in C+ such that J∗F (λ; ~ξ) = JF (λ; ~ξ) for all λ > 0, then
J∗F (λ; · ) is defined to be the conditional analytic Wiener integral of F over C0[0, T ]
given XG with parameter λ. For λ ∈ C+, we write Eanwλ(F |XG = ~ξ) = J∗F (λ; ~ξ). If
for fixed real q ∈ R \ {0}, the limit

lim
λ→−iq
λ∈C+

Eanwλ(F |XG = ~ξ)

exists for a.e. ~ξ ∈ Rn, then we will denote the value of this limit by Eanfq(F |XG = ~ξ),
and we call it the conditional analytic Feynman integral of F over C0[0, T ] given XG
with parameter q.

Let F be a C-valued SIM functional on C0[0, T ] such that the Wiener integral
E[F (y + λ−1/2 · )] ≡ Ex[F (y + λ−1/2x)] exists as a finite number for all λ > 0. Then
one can easily see from (2.2) that for all λ > 0,
(3.1)

E(F (λ−1/2 · )|XG(λ−1/2 · ) = ~ξ) = Ex

[
F

(
λ−1/2x− λ−1/2

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

)]
.

Thus we have that

Eanwλ(F |XG = ~ξ) = Eanwλ
x

[
F

(
x−

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

)]

and

(3.2) Eanfq(F |XG = ~ξ) = E
anfq
x

[
F

(
x−

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

)]

where Eanwλ
x [F (x)] and E

anfq
x [F (x)] denote the analytic Wiener and the analytic

Feynman integrals of functionals F on C0[0, T ], respectively, see [1, 5].
We are now ready to state the definitions of the CFFT and the CCP of functionals

on C0[0, T ].
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Definition 3.1. Let F : C0[0, T ] → C be an SIM functional on C0[0, T ] such that
the Wiener integral E[F (y+λ−1/2 · )] exists as a finite number for all λ > 0. Let XG :
C0[0, T ] → Rn be given by (2.1). For λ ∈ C+ and y ∈ C0[0, T ], let Tλ(F |XG)(y, ~ξ)
denote the conditional analytic Wiener integral of F (y + ·) given XG , that is to say,

Tλ(F |XG)(y, ~ξ) = Eanwλ(F (y + · )|XG = ~ξ)

= Eanwλ
x

[
F

(
y + x−

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

)]
.

We define the L1 analytic CFFT T
(1)
q (F |XG)(y, ~ξ) of F given XG by the formula

T (1)
q (F |XG)(y, ~ξ) = lim

λ→−iq
λ∈C+

Tλ(F |XG)(y, ~ξ).

We also define the CCP of SIM functionals F and G given XG by the formula

[(F ∗G)λ|XG ](y, ~ξ)

=





Eanwλ

(
F

(
y + ·√

2

)
G

(
y − ·√

2

)∣∣∣∣XG = ~ξ

)
, λ ∈ C+

Eanfq

(
F

(
y + ·√

2

)
G

(
y − ·√

2

)∣∣∣∣XG = ~ξ

)
, λ = −iq, q ∈ R \ {0}.

4. CFFT and CCP for Functionals in a Banach Algebra

In this section, we will establish the existences of the CFFT and the CCP for
bounded functionals in the Cameron and Storvick’s Banach algebra S(L2[0, T ]).

The Banach algebra S(L2[0, T ]) consists of functionals on C0[0, T ] having the
form

(4.1) F (x) =
∫

L2[0,T ]
exp{i〈u, x〉}df(u)

for SI-a.e. x ∈ C0[0, T ], where the associated measure f is an element of the Banach
algebra M(L2[0, T ]), the space of C-valued countably additive (and hence finite)
Borel measures on L2[0, T ]. More precisely, since we shall identify functionals which
coincide SI-a.e. on C0[0, T ], the space S(L2[0, T ]) can be regarded as the space of all
s-equivalence classes of functionals of the form (4.1). It was also shown in [1] that the
correspondence f 7→ F is injective, carries convolution into pointwise multiplication
and that S(L2[0, T ]) is a Banach algebra with the norm

‖F‖ ≡ ‖f‖ =
∫

L2[0,T ]
d|f |(u).
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In particular, it was shown in [3] that the Banach algebra S(L2[0, T ]) contains many
functionals of interest in Feynman integration theory. For a more detailed study of
the Banach algebra S(L2[0, T ]), see [1, 3].

Using the fact that the PWZ stochastic integral 〈w, x〉 of a function w in L2[0, T ]
is a Gaussian random variable, as a functional of x, with mean zero and variance
‖w‖2

2, and the change of variable theorem, we have the following lemma.

Lemma 4.1. For each w ∈ L2[0, T ] and any ρ > 0,

(4.2) Ex[exp{iρ〈w, x〉}] = exp
{− ρ2‖w‖2

2

}
.

From the bilinearity of the PWZ stochastic integral 〈·, ·〉 and equation (4.2) with
w replaced with w −∑n

j=1(w, ej)2ej , we have the following lemma.

Lemma 4.2. Let {e1, . . . , en} be an orthonormal set of functions in L2[0, T ]. Then
for each w ∈ L2[0, T ] and any ρ > 0,

(4.3) Ex

[
exp

{
iρ

〈
w, x−

n∑

j=1

γj(x)βj

〉}]
= exp

{
− ρ2

2

[
‖w‖2 −

n∑

j=1

(w, ej)22

]}
.

In particular, for any q ∈ R \ {0} and any ρ > 0,
(4.4)

E
anfq
x

[
exp

{
iρ

〈
w, x−

n∑

j=1

γj(x)βj

〉}]
= exp

{
− iρ2

2q

[
‖w‖2 −

n∑

j=1

(w, ej)22

]}
.

In our first theorem of this section, we establish the existences of the CFFT
T

(1)
q (F |XG) of functionals F in the Banach algebra S(L2[0, T ]).

Theorem 4.3. Let F ∈ S(L2[0, T ]) be given by equation (4.1), and let XG be given
by equation (2.1). Then for a.e. ~ξ ∈ Rn,

(4.5)

T (1)
q (F |XG)(y, ~ξ)

=
∫

L2[0,T ]
exp

{
i〈u, y〉 − i

2q

[
‖u‖2

2 −
n∑

j=1

(u, ej)22

]
+ i

n∑

j=1

ξj(u, ej)2

}
df(u)

for all q ∈ R \ {0} and SI-a.e. y ∈ C0[0, T ].
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Proof. Using (4.1), (3.1) with F replaced with F (y + ·), the Fubini theorem, (4.3)
with w and ρ replaced with u and λ−1/2, it follows that for (λ, ~ξ) ∈ (0, +∞)× Rn,

JF (y+·)(λ; ~ξ) ≡ E
(
F (y + λ−1/2 · )∣∣XG(λ−1/2 · ) = ~ξ

)

=
∫

L2[0,T ]
exp

{
i〈u, y〉+ i

〈
u,

n∑

j=1

ξjβj

〉}

× Ex

[
exp

{
iλ−1/2

〈
u, x−

n∑

j=1

γj(x)βj

〉}]
df(u)

=
∫

L2[0,T ]
exp

{
i〈u, y〉 − 1

2λ

[
‖u‖2

2 −
n∑

j=1

(u, ej)22

]
+ i

n∑

j=1

ξj(u, ej)2

}
df(u).

Let

(4.6)

J∗F (y+·)(λ; ~ξ)

=
∫

L2[0,T ]
exp

{
i〈u, y〉 − 1

2λ

[
‖u‖2

2 −
n∑

j=1

(u, ej)22

]
+ i

n∑

j=1

ξj(u, ej)2

}
df(u)

for λ ∈ C+. Since Re(λ) > 0 for all λ ∈ C+, it follows that

(4.7)
∣∣J∗F (y+·)(λ; ~ξ)

∣∣ ≤
∫

L2[0,T ]
d|f |(u) = ‖f‖ < +∞.

Hence, applying the dominated convergence theorem, we see that J∗F (λ; ~ξ) is a con-
tinuous function of λ ∈ C̃+. Also, applying the Morera theorem, one can see that
J∗F (y+·)(λ; ~ξ) is analytic on C+. Therefore, the conditional analytic Wiener integral

Tλ(F |XG)(y, ~ξ) = Eanwλ(F (y + ·)|XG = ~ξ) = J∗F (y+·)(λ; ~ξ) exists and is given by the
right hand side of (4.6). Finally, by the dominated convergence theorem (the use of
which is justified by (4.7)), the L1 analytic CFFT T

(1)
q (F |XG = ~ξ) of F exists and

is given by the formula (4.5). ¤

From the definition of the conditional Feynman integral and the L1 analytic
CFFT, it follows that T

(1)
q (F |XG)(0, ~ξ) = Eanfq(F |XG = ~ξ). We thus have the

following corollary.

Corollary 4.4. Let F and XG be as in Theorem 4.3. Then the conditional Feynman
integral Eanfq(F |XG = ~ξ) of F exists for all q ∈ R \ {0} and a.e. ~ξ ∈ Rn, and is
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given by the formula

Eanfq(F |XG = ~ξ)

=
∫

L2[0,T ]
exp

{
− i

2q

[
‖u‖2

2 −
n∑

j=1

(u, ej)22

]
+ i

n∑

j=1

ξj(u, ej)2

}
df(u).

Remark 4.5. Given a functional F in S(L2[0, T ]) with the corresponding measure
f ∈ M(L2[0, T ]), and given a nonzero real number q and a vector ~ξ ∈ Rn, define a
set function f

q,~ξ
: B(L2[0, T ]) → C by the formula

(4.8) f
q,~ξ

(U) =
∫

U
exp

{
− i

2q

[
‖u‖2

2 −
n∑

j=1

(u, ej)22

]
+ i

n∑

j=1

ξj(u, ej)2

}
df(u)

for each U in B(L2[0, T ]), the Borel σ-field on L2[0, T ]. Then f
q,~ξ

is clearly a member

of M(L2[0, T ]) and ‖f
q,~ξ
‖ = ‖f‖ for any q ∈ R \ {0} and ~ξ ∈ Rn. Then equation

(4.5) can be written by

(4.9) T (1)
q (F |XG)(y, ~ξ) =

∫

L2[0,T ]
exp{i〈u, y〉}df

q,~ξ
(u)

for SI-a.e. y ∈ C0[0, T ], and so the L1 analytic CFFT T
(1)
q (F |XG)( · , ~ξ) of F is an

element of S(L2[0, T ]) for each ~ξ ∈ Rn.

In our next theorem, we also establish the existence the CCP of functionals F

and G in S(L2[0, T ]).

Theorem 4.6. Let F and G be the functionals in S(L2[0, T ]) with corresponding
Borel measures f and g, respectively, inM(L2[0, T ]), and let XG be given by equation
(2.1). Then for a.e. ~ξ ∈ Rn,

(4.10)

[(F ∗G)q|XG ](y, ~ξ) =
∫

L2[0,T ]

∫

L2[0,T ]
exp

{
i√
2
〈u + v, y〉

− i

4q

[
‖u− v‖2

2 −
n∑

j=1

(u− v, ej)22

]
+

i√
2

n∑

j=1

ξj(u− v, ej)2

}
df(u)dg(v)

for all q ∈ R \ {0} and SI-a.e. y ∈ C0[0, T ].

Proof. By using similar methods as those in the proof of Theorem 4.3, it follows
equation (4.10) immediately by the definition of the CCP. ¤

Remark 4.7. Given two functionals F and G in S(L2[0, T ]) with the corresponding
measures f and g in M(L2[0, T ]), and given a nonzero real q and a vector ~ξ ∈ Rn,
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define a set function ϕ
q,~ξ

: B(L2[0, T ]× L2[0, T ]) → C by the formula

(4.11)

ϕ
q,~ξ

(V ) =
∫∫

V
exp

{
− i

4q

[
‖u− v‖2

2 −
n∑

j=1

(u− v, ej)22

]

+
i√
2

n∑

j=1

ξj(u− v, ej)2

}
df(u)dg(v)

for each V in B(L2[0, T ] × L2[0, T ]), the Borel σ-field on L2[0, T ] × L2[0, T ]. Then
ϕ

q,~ξ
is a complex measure on B(L2[0, T ]×L2[0, T ]). Define a function φ : L2[0, T ]×

L2[0, T ] → L2[0, T ] by φ(u, v) = (u+v)/
√

2. Then φ is a continuous function, and so
it is B(L2[0, T ]×L2[0, T ])-measurable. Thus the set function ϕ

q,~ξ
◦φ−1 : L2[0, T ] → C

is in M(L2[0, T ]) obviously. Under these setting, equation (4.10) can be rewritten
by

[(F ∗G)q|XG ](y, ~ξ) =
∫

L2[0,T ]
exp{i〈w, y〉}dϕ

q,~ξ
◦ φ−1(w)

for SI-a.e. y ∈ C0[0, T ]. Thus the CCP [(F ∗G)q|XG ]( · , ~ξ) of F and G is an element
of S(L2[0, T ]) for each ~ξ ∈ Rn.

5. Relationships between the CFFT and the CCP

In this section, we establish basic relationships between the CFFTs and the CCPs.
The following theorem is one of our main assertions; namely that the CFFT of the
CCP is the product of the CFFTs.

Theorem 5.1. Let F , G, and XG be as in Theorem 4.6. Then for all q ∈ R \ {0}
and SI-a.e. y ∈ C0[0, T ],

T (1)
q

(
[(F ∗G)q|XG ]( · , ~ξ(1))

∣∣∣XG
)
(y, ~ξ(2))

= T (1)
q (F |XG)

(
y√
2
,
~ξ(2) + ~ξ(1)

√
2

)
T (1)

q (G|XG)
(

y√
2
,
~ξ(2) − ~ξ(1)

√
2

)
.

Proof. Using (4.9) with F and f replaced with [(F ∗ G)q|XG ] and ϕ
q,~ξ(1) ◦ φ−1 re-

spectively, (4.8) with f replaced with ϕ
q,~ξ(1) ◦ φ−1, (4.11), the Fubini theorem, and

(4.5) together with simple calculations, it follows that

T (1)
q

([
(F ∗G)q

∣∣XG
]
( · , ~ξ(1))

∣∣∣XG
)
(y, ~ξ(2))

=
∫

L2[0,T ]
exp{i〈w, y〉}d(ϕ

q,~ξ(1) ◦ φ−1)
q,~ξ(2)(w)
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=
∫

L2[0,T ]
exp

{
i

〈
u,

y√
2

〉

− i

2q

[
‖u‖2

2 −
n∑

j=1

(u, ej)22

]
+ i

n∑

j=1

ξ
(2)
j + ξ

(1)
j√

2
(u, ej)2

}
df(u)

×
∫

L2[0,T ]
exp

{
i

〈
v,

y√
2

〉

− i

2q

[
‖v‖2

2 −
n∑

j=1

(v, ej)22

]
+ i

n∑

j=1

ξ
(2)
j − ξ

(1)
j√

2
(v, ej)2

}
dg(v)

= T (1)
q (F |XG)

(
y√
2
,
~ξ(2) + ~ξ(1)

√
2

)
T (1)

q (G|XG)
(

y√
2
,
~ξ(2) − ~ξ(1)

√
2

)

as desired. ¤

In order to provide our second main assertion of this paper, we need the following
lemma.

Lemma 5.2. Let F , G, and XG be as in Theorem 4.6. Then for all q ∈ R\{0} and
SI-a.e. y ∈ C0[0, T ],

(5.1)

[(
T (1)

q (F |XG)( · , ~ξ(1)) ∗ T (1)
q (G|XG)( · , ~ξ(2))

)
−q

∣∣∣XG
]
(y, ~ξ(3))

=
∫

L2[0,T ]

∫

L2[0,T ]
exp

{
i√
2
〈u + v, y〉 − i

4q

[
‖u + v‖2

2 −
n∑

j=1

(u + v)22

]

+ i
n∑

j=1

(
ξ
(1)
j +

ξ
(3)
j√
2

)
(u, ej)2 + i

n∑

j=1

(
ξ
(2)
j − ξ

(3)
j√
2

)
(v, ej)2

}
df(u)dg(v)

and

(5.2)

T (1)
q

(
F

( ·√
2

)
G

( ·√
2

)∣∣∣∣XG

)
(y, ~ξ)

=
∫

L2[0,T ]

∫

L2[0,T ]
exp

{
i√
2
〈u + v, y〉 − i

4q

[
‖u + v‖2

2 −
n∑

j=1

(u + v)22

]

+ i
n∑

j=1

ξj(u + v, ej)2

}
df(u)dg(v).

Proof. In view of Remark 4.5, we observe that

T (1)
q (F |XG)(y, ~ξ(1)) =

∫

L2[0,T ]
exp{i〈u, y〉}df

q,~ξ(1)(u)
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and

T (1)
q (G|XG)(y, ~ξ(2)) =

∫

L2[0,T ]
exp{i〈v, y〉}dg

q,~ξ(2)(v)

where f
q,~ξ(1) is the complex measure in M(L2[0, T ]) given by (4.8) with ~ξ replaced

with ~ξ(1), and g
q,~ξ(2) is the complex measure in M(L2[0, T ]) given by the formula:

g
q,~ξ(2)(U) =

∫

U
exp

{
− i

2q

[
‖v‖2

2 −
n∑

j=1

(v, ej)22

]
+ i

n∑

j=1

ξj(v, ej)2

}
dg(v)

for each U ∈ B(L2[0, T ]). Then using (4.10) with F , G, ~ξ, f and g replaced with
T

(1)
q (F |XG)(·, ~ξ(1)), T

(1)
q (G|XG)(·, ~ξ(2)), ~ξ(3), f

q,~ξ(1) and g
q,~ξ(2) respectively, and (4.9)

with ~ξ replaced with ~ξ(1), it follows equation (5.1) immediately.
Next, using the definition of the L1 analytic CFFT, (3.2) with F replaced with

F ((y + ·)/√2)G((y + ·)√2), and the Fubini theorem, it follows that

(5.3)

T (1)
q

(
F

( ·√
2

)
G

( ·√
2

)∣∣∣∣XG

)
(y, ~ξ)

= Eanfq

[
F

(
y√
2

+
1√
2

[
x−

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

])

×G

(
y√
2

+
1√
2

[
x−

n∑

j=1

γj(x)βj +
n∑

j=1

ξjβj

])]

=
∫

L2[0,T ]

∫

L2[0,T ]
exp

{
i√
2
〈u + v, y〉+

〈
u + v,

n∑

j=1

ξjβj

〉}

× Eanfq

[
exp

{
i√
2

〈
u + v, x−

n∑

j=1

γj(x)βj

〉}
df(u)dg(v).

Applying (4.4) with w and ρ replaced with u + v and 1/
√

2 in the last expression of
(5.3), it follows equation (5.2) as desired. ¤

Let (Rn)4 denote the product of four copies of Rn. A close examination of the
right-hand sides of (5.1) and (5.2) shows that they are equal if (~ξ, ~ξ(1), ~ξ(2), ~ξ(3)) ∈
(Rn)4 is in the solution set of the system

(5.4)

{
~ξ −√2~ξ(1) − ~ξ(3) = ~0
~ξ −√2~ξ(2) + ~ξ(3) = ~0.
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Theorem 5.3. Let F , G, and XG be as in Theorem 4.6 and let (~ξ, ~ξ(1), ~ξ(2), ~ξ(3))
satisfy the system (5.4). Then for all q ∈ R \ {0} and SI-a.e. y ∈ C0[0, T ],

([
Tq(F |XG)( · , ~ξ(1)) ∗ Tq(G|XG)( · , ~ξ(2))

]
−q

∣∣∣XG
)
(y, ~ξ(3))

= T (1)
q

(
F

( ·√
2

)
G

( ·√
2

)∣∣∣∣XG

)
(y, ~ξ).
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