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CATEGORICAL PROPERTIES OF PREORDERED

INTUITIONISTIC FUZZY APPROXIMATION SPACES

Sang Min Yun and Seok Jong Lee*

Abstract. We prove that for any preordered intuitionistic fuzzy
approximation space, an intuitionistic fuzzy topology can be cre-
ated, and conversely, for any intuitionistic fuzzy topology, a reflex-
ive intuitionistic fuzzy relation can be constructed. We also show
that there is a relationship, called Galois correspondence, between
the functors of these categories. Additionally, by applying certain
limitations on the category of intuitionistic fuzzy topological spaces,
we obtain an isomorphism between these categories.

1. Introduction

The theory of the rough set was first proposed by Z. Pollack [8]. It is
an extension of set theory that deals with incomplete and uncertain in-
formation, and it serves as a useful mathematical tool for data inference
in the field of intelligent systems research. The fundamental structure
of rough set theory is an approximation space, from which upper and
lower limit approximations can be derived. These approximations can
be used to uncover hidden knowledge in information systems and express
it in the form of decision rules [8, 9]. There have been a variety of stud-
ies on applications such as fuzzy topology, intuitionistic fuzzy topology,
approximation spaces, and intuitionistic approximation spaces, which
examine the relationship between fuzzy theory and extended theories
using rough sets [3, 4, 1, 5, 7, 12]. However, the approximation space is
determined by equivalence relations on the set, which can be a restric-
tive condition that does not often occur in real-world scenarios, thus we
need to weaken this condition in order to develop a more robust theory.
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In the previous works [11, 12, 13], we have examined the relation-
ship between preordered intuitionistic fuzzy approximation spaces and
preordered approximation spaces with the weakened preordered relation
condition. Specifically, we found that the upper approximation of a
set is the set itself if and only if the set is a lower set, whenever the
intuitionistic fuzzy relation is reflexive.

In this paper, we aim to further our mathematical understanding of
these spaces by investigating their categorical properties. We demon-
strate that for any preordered intuitionistic fuzzy approximation space,
an intuitionistic fuzzy topology can be constructed, and conversely, for
any intuitionistic fuzzy topology, a reflexive intuitionistic fuzzy relation
can be established. Additionally, we show that there is a Galois cor-
respondence between the functors of these categories. Furthermore, by
imposing certain restrictions on the category of intuitionistic fuzzy topo-
logical spaces, we establish an isomorphism between these categories.

2. Preliminaries

Now we list some definitions and properties which we shall use fre-
quently in the following sections.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered
pair

A = (µA, νA)

where the functions µA : X → I and νA : X → I denote the degree of
membership and the degree of nonmembership respectively and µA +
νA ≤ 1(see [1]). Obviously, every fuzzy set µ in X is an intuitionistic
fuzzy set of the form (µ, 1̃− µ).

Throughout this paper, ‘IF’ stands for ‘intuitionistic fuzzy.’ IF(X)
denotes the family of all intuitionistic fuzzy sets in X, I ⊗ I denotes the
family of all intuitionistic fuzzy numbers (a, b) such that a, b ∈ [0, 1] and
a+ b ≤ 1, with the order relation defined by

(a, b) ≤ (c, d) iff a ≤ c and b ≥ d.

For all (a, b) ∈ I ⊗ I, (̃a, b) denotes the constant intuitionistic fuzzy set
in X such that the membership value is ‘a’ and the nonmembership
value is ‘b’.

Definition 2.1. ([2]) An IF set R on X×X is called an intuitionistic
fuzzy relation on X. Moreover, R is called

(i) reflexive if R(x, x) = (1, 0) for all x ∈ X,
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(ii) symmetric if R(x, y) = R(y, x) for all x, y ∈ X,
(iii) transitive if R(x, y) ∧R(y, z) ≤ R(x, z) for all x, y, z ∈ X,

A reflexive and transitive IF relation is called an IF preorder.

Definition 2.2. ([15]) Let R be an IF relation on X. Then the two
functions R,R : IF(X) → IF(X), defined

R(A)(x) =
∨
y∈X

(R(x, y) ∧A(y)),

R(A)(x) =
∧
y∈X

(R(x, y)C ∨A(y)),

are respectively called the upper approximation operator and the lower
approximation operator on X.

Definition 2.3. ([4, 14]) An IF topology T on X is a family of IF
sets in X that is closed under arbitrary suprema and finite infima and
contains all constant IF sets. The IF sets in T are called open, and their
complements, closed.

Definition 2.4. ([12]) Let T be an IF topology on X. Define an IF
relation RT on X by

RT (x, y) = clT
(
y(1,0)

)
(x)

for all (x, y) ∈ X ×X. Then RT is called the intuitionistic fuzzy rela-
tion induced by T on X, and (X,RT ) is called the intuitionistic fuzzy
approximation space induced by T on X.

For each R ∈ IF(X ×X),

TR = {A ∈ IF(X) | A = R(A)},
ΘR = {R(A) | A ∈ IF(X)},

Proposition 2.5. ([13]) Let (X,R) be an IF approximation space.
If R is an IF preorder, then

TR = ΘR.

Theorem 2.6. ([13]) If (X,R) is a reflective IF approximation space,
then TR is the Alexandrov IF topology of X

Definition 2.7. ([11]) Let (X,R) be an IF approximation space.
Then A ∈ IF(X) is called an intuitionistic fuzzy upper set in (X,R) if

A(x) ∧R(x, y) ≤ A(y), ∀x, y ∈ X.

Dually, A is called an intuitionistic fuzzy lower set in (X,R) if A(y) ∧
R(x, y) ≤ A(x) for all x, y ∈ X.
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Let R be an IF preorder on X. For x, y ∈ X, the real number R(x, y)
can be interpreted as the degree to which ‘x ≤ y’ holds true. The
condition A(x) ∧ R(x, y) ≤ A(y) can be interpreted as the statement
that if x is in A and x ≤ y, then y is in A. Particularly, if R is an IF
equivalence, then an IF set A is an upper set in (X,R) if and only if it
is a lower set in (X,R).

The classical preorder x ≤ y can be naturally extended to R(x, y) =
(1, 0) in an IF preorder. Obviously, the notion of IF upper sets and
IF lower sets agrees with that of upper sets and lower sets in classical
preordered space.

Theorem 2.8. ([12]) Let T be an IF topology on X which satisfies
the axiom

(CC) clT
(
(a, b) ∧A

)
= (a, b) ∧ clT

(
A
)

for any (a, b) ∈ I ⊗ I and A ∈ IF(X). Then

(1) RT is a closure operator of T ; i.e. RT = clT .
(2) T is Alexandrov.

Other terminologies used in the following sections refer to [11, 12, 13].

3. Relations between Top and PrApp

In this paper, in order to avoid confusion, we consider only the finite
universal set, although some results can be extended to an infinite uni-
versal set. From now on, we study categorical relationship between the
category of intuitionistic fuzzy approximation spaces and the category
of intuitionistic fuzzy topologies. Let App be the category of all approx-
imation spaces and order-preserving functions, and let PrApp be the
category of all preordered approximation spaces and order-preserving
functions. Let IFApp be the category of all intuitionistic fuzzy approx-
imation spaces and order-preserving functions. And let IFPrApp be
the category of all preordered intuitionistic fuzzy approximation spaces
and order-preserving functions. Let Top be the category of all topolog-
ical spaces and continuous functions, and let IFTop be the category of
all intuitionistic fuzzy topological spaces and continuous functions.

A function f : (X,≤X) → (Y,≤Y ) between two approximation spaces
is called order-preserving if x ≤X y implies f(x) ≤Y f(y) for all x, y ∈
X. An order-preserving function in IF approximation spaces is defined
similarly as follows.
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Definition 3.1. A function f : (X,R1) → (Y,R2) between two IF
approximation spaces is called order-preserving if

R1(x, y) ≤ R2(f(x), f(y)) for all x, y ∈ X.

Definition 3.2. ([6]) For a topological space (X, τ) and x, y ∈ X,
let x ≼ y if y ∈ M implies x ∈ M for each closed set M of X, or
equivalently, x ∈ clτ ({y}). Then ≼ is a preorder on X, and it is called
the specialization order on X. We denote this preorder by Ω(τ).

Remark 3.3. Consider the following in classical topology,

y ∈ F implies x ∈ F for all closed set F ⊆ X

⇔ x /∈ F implies y /∈ F for all closed set F ⊆ X

⇔ x ∈ FC implies y ∈ FC for all closed set F ⊆ X

⇔ x ∈ U implies y ∈ U for all open set U ⊆ X.

Thus, we have the conclusion that the following conditions are equiv-
alent in classical topology:

(1) y ∈ F implies x ∈ F for all closed set F ⊆ X.
(2) x ∈ U implies y ∈ U for all open set U ⊆ X.

Proposition 3.4. Define Ω : Top → PrApp by

Ω(X, τ) = (X,Ω(τ)) and Ω(f) = f,

where Ω(τ) is the specialization order on X. Then Ω is a functor from
Top to PrApp.

Proof. Suppose that f : (X, τ) → (Y, υ) is a continuous function
between two topological spaces. Take x, y ∈ X and x ≼X y with respect
to the specialization order on X. Take any open set B ∈ υ. Since
f is continuous, f−1(B) is open in (X, τ). Thus x ∈ f−1(B) implies
y ∈ f−1(B). That is, f(x) ∈ B implies f(y) ∈ B. Hence f(x) ≼Y f(y)
with respect to the specialization order on Y . Therefore f : Ω(X, τ) →
Ω(Y, υ) is order-preserving.

Suppose that (X,≼) is a preordered approximation space and A ⊆ X.
Then the family of all upper sets of X is clearly a topology on X, which
is called the Alexandrov topology on X and denoted by Γ(≼).

Proposition 3.5. Define Γ : PrApp → Top by

Γ(X,≼) = (X,Γ(≼)) and Γ(f) = f.

Then Γ is a functor from PrApp to Top.
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Proof. Suppose that f : (X,≼X) → (Y,≼Y ) is an order-preserving
function between two preordered approximation spaces. Let A be an
open set in Γ(Y,≼Y ), then A is an upper set in (Y,≼Y ) by definition
of Γ(Y,≼Y ). We need only check that f−1(A) ∈ Γ(≼X), i.e. f−1(A)
is an upper set in (X,≼X). Suppose that x ≼X y and x ∈ f−1(A).
Then f(x) ≼Y f(y) and f(y) ∈ A, because f is order-preserving and A
is an upper set. Thus y ∈ f−1(A), and hence f−1(A) is an upper set
in (X,≼X). So f−1(A) ∈ Γ(≼X). Therefore f : Γ(X,≼X) → Γ(Y,≼Y

) is continuous. Hence Γ is a functor from PrApp to Top.

Theorem 3.6. (Γ,Ω) is a Galois correspondence between the cat-
egories PrApp and Top. Moreover, Ω is a left inverse of Γ, i.e.,
Ω ◦ Γ(X,⪯) = (X,⪯) for any preordered approximation space (X,⪯).

Proof. First of all, we prove that Ω is a left inverse of Γ. Let (X,⪯)
be any preordered approximation space on X, and let ≤ be the special-
ization order on Γ(X,⪯). Then, for any x, y ∈ X,

x ⪯ y

⇔ x ∈ U implies y ∈ U for any upper set U ⊆ X

⇔ x ∈ U implies y ∈ U for any open set U in Γ(X,⪯)

⇔ x ≤ y.

Therefore, Ω ◦ Γ(X,⪯) = (X,≤) = (X,⪯). Consequently, Ω is a left
inverse of Γ.

Secondly, for any (X,⪯X) ∈ PrApp, idX : (X,⪯X) → Ω(Γ(X,⪯X

)) is clearly an order-preserving function. Consider (Y, υ) ∈ Top and
an order-preserving function f : (X,⪯X) → Ω(Y, υ). In order to
show that f : Γ(X,⪯X) → (Y, υ) is continuous, take U ∈ υ. Suppose
that f−1(U) /∈ Γ(⪯X). Then f−1(U) is not an upper set on (X,⪯X

), i.e., there are x and y such that x ⪯X y, x ∈ f−1(U) and y /∈
f−1(U). So x is not less than or equal to y in Ω(Γ(X,⪯X)). This is a
contradiction, because the order in (X,⪯X) and the order in Ω(Γ(X,⪯X

)) are equivalent. Thus f−1(U) ∈ Γ(⪯X). Hence f : Γ(X,⪯X) → (Y, υ)
is continuous.

4. Relations between IFTop and IFPrApp

From [13], the intuitionistic fuzzy topology TR on X induced by a
preordered intuitionistic fuzzy approximation space (X,R) is clearly an
Alexandrov topology [6] onX and it satisfies the axiom (CC) of Theorem
2.8.
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Proposition 4.1. Define Φ : IFPrApp → IFTop by

Φ(X,R) = (X,Φ(R)) and Φ(f) = f,

where Φ(R) = {A ∈ IF(X) | A = R(A)}. Then Φ is a functor from
IFPrApp to IFTop.

Proof. Suppose that f : (X,RX) → (Y,RY ) is an order-preserving
function between two preordered IF approximation spaces. It is enough
to show that f : Φ(X,RX) → Φ(Y,RY ) is continuous. Let A ∈ Φ(RY ) =
{A ∈ IF(Y ) | A = RY (A)}, then AC is an upper set in (Y,R−1

Y ). Thus

AC
(
f(x)

)
∧R−1

X (x, y) ≤ AC
(
f(x)

)
∧R−1

Y (f(x), f(y)) ≤ AC
(
f(y)

)
.

Thus f−1(AC) = AC
(
f
)
is an upper set in (X,R−1

X ), which means,

A
(
f
)
= f−1(A) ∈ Φ(RX). Therefore f is continuous.

On the other hand, for an intuitionistic fuzzy topological space (X, T ),
the IF relation is defined by RT (x, y) = clT

(
y(1,0)

)
(x) from Definition

2.4. We denote it by Ψ(T ). Moreover, for an intuitionistic fuzzy topo-
logical space (X, T ) which satisfies the axiom (CC), the IF relation Ψ(T )
on X is clearly an intuitionistic fuzzy preorder on X by Theorem 3.7 of
[12].

Let IFTopCC be the category of all intuitionistic fuzzy topological
spaces which satisfy the axiom (CC) and continuous functions. If we
restrict Ψ on IFTopCC, we have the following:

Proposition 4.2. Define Ψ : IFTopCC → IFPrApp by

Ψ(X, T ) = (X,Ψ(T )) and Ψ(f) = f,

where Ψ(T )(x, y) = clT
(
y(1,0)

)
(x). Then Ψ is a functor from IFTopCC

to IFPrApp.

Proof. Suppose that f : (X, TX) → (Y, TY ) is a continuous function
between two IF topological spaces which satisfy the axiom (CC). We
will show that f : Ψ(X, TX) → Ψ(Y, TY ) is order-preserving. Take any
x, y ∈ X. Since f is continuous, f(clTX (A)) ⊆ clTY (f(A)) for any IF set
A ∈ IF(X). Thus

RTY (f(x), f(y)) = clTY
(
f(y)(1,0)

)
(f(x))

≥ f
(
clTX

(
y(1,0)

)
)(f(x))

= sup{clTX
(
y(1,0)

)
(t) | t ∈ f−1(f(x))}

≥ clTX
(
y(1,0)

)
(x)

= RTX (x, y).
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Hence f is order-preserving.

Theorem 4.3. (Ψ,Φ) is a Galois correspondence between the cate-
gories IFTop and IFPrApp. Moreover, Ψ is a left inverse of Φ, i.e.,
Ψ ◦Φ(X,R) = (X,R) for any preordered IF approximation space on X.

Proof. First of all, we prove that Ψ is a left inverse of Φ. Let (X,R)
be any preordered IF approximation space on X. Then, by Theorem 3.3
of [12], RTR = R. Therefore, Ψ ◦ Φ(X,R) = (X,R). Consequently, Ψ is
a left inverse of Φ.

Now, we prove that (Ψ,Φ) is a Galois correspondence. Take any
(X, T ) ∈ IFTop. Then RT is a reflexive IF relation on X induced by
T . By Theorem 3.2 of [12], RT (A) ⊆ intT (A) ⊆ A for any IF set A ∈
IF(X). Let U be an open set in Φ ◦Ψ(X, T ), then RT (U) = intT (U) =
U by definition of Φ. Thus, U is open in (X, T ). Therefore idX :
(X, T ) → Φ ◦ Ψ(X, T ) is continuous. Consider (Y,RY ) ∈ IFPrApp
and a continuous function f : (X, T ) → Φ(Y,RY ). In order to show
that f : Ψ(X, T ) → (Y,RY ) is order-preserving, take any x, y ∈ X.
Since f : (X, T ) → Φ(Y,RY ) is continuous, f(clT (A)) ⊆ clΦ(RY )(f(A))
for any IF set A ∈ IF(X). Thus,

RY (f(x), f(y)) = clΦ(RY )

(
f(y)(1,0)

)
(f(x))

≥ f
(
clT

(
y(1,0)

)
)(f(x))

≥ clT
(
y(1,0)

)
(x)

= RT (x, y).

Hence f : Ψ(X, T ) → (Y,RY ) is an order-preserving function.

Proposition 4.4. Suppose that (X, T ) is an IF topological space.
Then the following conditions are equivalent:

(1) (X, T ) = Φ ◦Ψ(X, T ).
(2) (X, T ) satisfies the axiom (CC).

Proof. By Theorem 3.7 in [12], it is obvious.

Theorem 4.5. IFTopCC and IFPrApp are isomorphic.

Proof. By Theorem 4.3 and Proposition 4.4, it is obvious.

5. Relations between Top and IFTop

In this section, we define some functors between IFTop and Top.
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Proposition 5.1. Define ρ : IFTop → Top by

ρ(X, T ) = (X, ρ(T )) and ρ(f) = f,

where ρ(T ) = {A−1
(
(1, 0)

)
| A ∈ T and A(x) = (1, 0) or (0, 1) for all x ∈

X}. Then ρ is a functor from IFTop to Top.

Proof. Clearly ρ(T ) is a topology on X. Next, we show that if
f : (X, T ) → (Y,U) is continuous, then f : (X, ρ(T )) → (Y, ρ(U)) is con-
tinuous. Let B ∈ ρ(U). Then χB ∈ U . Since f : (X, T ) → (Y,U) is con-
tinuous, f−1

(
χB

)
= χB

(
f
)
∈ T . In order to show that f−1(B) ∈ ρ(T ),

consider

x ∈ f−1(B) ⇔ f(x) ∈ B

⇔ χB(f(x)) = (1, 0)

⇔ f−1
(
χB

)
(x) = (1, 0).

So f−1(B) is the crisp set equivalent of f−1
(
χB

)
. Therefore f−1(B) ∈

ρ(T ), and hence f : (X, ρ(T )) → (Y, ρ(U)) is continuous. Thus ρ is a
functor.

We will consider that the functor ω embeds the category of topological
spaces as a full subcategory in the category of IF topological spaces.

Proposition 5.2. Define ω : Top → IFTop by

ω(X, τ) = (X,ω(τ)) and ω(f) = f,

where ω(τ) is an IF topology generated by family of IF characteristic

functions and constant IF sets, i.e., generated by {χA | A ∈ τ}
⋃
{(̃a, b) |

(a, b) ∈ I ⊗ I}. Then ω is a functor from Top to IFTop.

Proof. Clearly ω(τ) is an IF topology. Next, we show that if f :
(X, τ) → (Y, υ) is continuous, then f : (X,ω(τ)) → (Y, ω(υ)) is continu-
ous. Let χB ∈ ω(υ). Then B ∈ υ, so f−1(B) ∈ τ . Hence χf−1(B) ∈ ω(τ).
Consider

χf−1(B)(x) = (1, 0) ⇔ x ∈ f−1(B)

⇔ f(x) ∈ B

⇔ χB(f(x)) = (1, 0)

⇔ f−1
(
χB

)
(x) = (1, 0).

It is shown that χf−1(B) = f−1
(
χB

)
. Thus f−1

(
χB

)
∈ ω(τ). Consider

f−1((̃a, b)) = (̃a, b) ∈ ω(τ). Hence ω is a functor.
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Theorem 5.3. The functor ρ : IFTop → Top is a left adjoint of the
functor ω : Top → IFTop.

Proof. For any (X, T ) in IFTop, idX : (X, T ) → ω(ρ(X, T )) is a
continuous function. Consider (Y, υ) ∈ Top and a continuous func-
tion f : (X, T ) → ω(Y, υ). In order to show that f : ρ(X, T ) =
(X, ρ(T )) → (Y, υ) is continuous, let B ∈ (Y, υ). Then χB ∈ ω(υ). Since
f : (X, T ) → ω(Y, υ) is continuous, f−1

(
χB

)
∈ T . Since χf−1(B) =

f−1
(
χB

)
, f−1(B) ∈ ρ(T ). Hence f : ρ(X, T ) = (X, ρ(T )) → (Y, υ)

is continuous. Therefore idX is a ω-universal function for (X, T ) in
IFTop.

Let IFTopC be the category of all intuitionistic fuzzy topological
spaces whose elements are of the form χA for some A ⊆ X, and contin-
uous functions.

Theorem 5.4. Two categories Top and IFTopC are isomorphic.

Proof. Define ωC : Top → IFTopC by

ωC(X, τ) = (X,ωC(τ)) and ωC(f) = f,

where ωC(τ) is the family of all IF characteristic functions of every
open set in (X, τ), i.e., ωC(τ) = {χA | A ∈ τ}. Consider the restric-
tion ρC : IFTopC → Top of the functor ρ. Then ωC and ρC are
functors. Clearly ρC

(
ωC(X, τ)

)
= ρC

(
X,ωC(τ)

)
=

(
X, ρC(ωC(τ))

)
=

(X, τ) for any (X, τ) ∈ Top. Moreover, for any (X, T ) ∈ IFTopC,
ωC

(
ρC(X, T )

)
= (X, T ). Hence the result follows.

Theorem 5.5. The category IFTopC is a reflective full subcategory
of IFTop.

Proof. Clearly IFTopC is a full subcategory of IFTop. Take any
(X, T ) in IFTop. Define T ∗ = {χA | χA ∈ T }. Then (X, T ∗) ∈
IFTopC and idX : (X, T ) → (X, T ∗) is continuous. Consider (Y,U) ∈
IFTopC and a continuous function f : (X, T ) → (Y,U). We need only to
check f : (X, T ∗) → (Y,U) is a continuous function. Let χB ∈ U . Since
f : (X, T ) → (Y,U) is continuous, f−1(χB) ∈ T . By the definition of
T ∗, f−1(χB) = χB(f) ∈ T ∗. Hence f : (X, T ∗) → (Y,U) is a continuous
function.

Corollary 5.6. The category Top is a reflective full subcategory of
IFTop.
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6. Other relations

Proposition 6.1. Define ι : PrApp → IFPrApp by

ι(X,≼) = (X, ι(≼)) and ι(f) = f,

where ι(≼)(x, y) = (1, 0) if x ≼ y; otherwise ι(≼)(x, y) = (0, 1). Then ι
is a functor from PrApp to IFPrApp.

Proof. Suppose that f : (X,≼X) → (Y,≼Y ) is an order-preserving
function between two preordered approximation spaces. It is enough to
show that f : ι(X,≼X) → ι(Y,≼Y ) is an order-preserving function. Ob-
viously, ι(X,≼X) and ι(Y,≼Y ) are preordered IF approximation spaces.
Let x, y ∈ X with ι(≼X)(x, y) = (1, 0). Then x ≼X y in X. Since
f : (X,≼X) → (Y,≼Y ) is order-preserving, f(x) ≼Y f(y). So ι(≼Y

)
(
f(x), f(y)

)
= (1, 0). Thus f : ι(X,≼X) → ι(Y,≼Y ) is an order-

preserving function.

Undoubtedly, a preordered approximation space (X,≼) can be re-
garded as a preordered intuitionistic fuzzy approximation space (X,R)
such that the range of R is I ⊗ I. In this way, we have an embedding
ι : PrApp → IFPrApp of the category of preordered approximation
spaces into the category of preordered intuitionistic fuzzy approximation
spaces as a full subcategory.

For a preordered approximation space (X,≼), letR = ι(≼). Precisely,
R(x, y) = (1, 0) if x ≼ y; otherwise R(x, y) = (0, 1). Then Φ(R) is the
collection of all upper sets on X whose range is I ⊗ I. We will show
that after the following proposition.

Proposition 6.2. Suppose that (X,≼) is a preordered approxima-
tion space and A : X → I ⊗ I is a function. Then the following are
equivalent:

(1) A is an upper set in (X, ι(≼)).
(2) AC is a lower set in (X, ι(≼)).
(3) A : (X,≼) → (I ⊗ I,≤) is order-preserving.

Proof.

AC is a lower set in (X, ι(≼))

⇔ AC(y) ∧ ι(≼)(x, y) ≤ AC(x) for all x, y ∈ X

⇔ AC(x) ≥ AC(y) whenever x ≼ y

⇔ A(x) ≤ A(y) whenever x ≼ y

⇔ A : (X,≼) → (I ⊗ I,≤) preserves order.
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AC is a lower set in (X, ι(≼))

⇔ AC(y) ∧ ι(≼)(x, y) ≤ AC(x) for all x, y ∈ X

⇔ AC(x) ≥ AC(y) whenever x ≼ y

⇔ A(x) ≤ A(y) whenever x ≼ y

⇔ A(x) ∧ ι(≼)(x, y) ≤ A(y) for all x, y ∈ X

⇔ A is an upper set in (X, ι(≼)).

Proposition 6.3. Let (X,≼) be a preordered approximation space,
and put R = ι(≼). Then

R(A) = A if and only if A is an upper set in (X, ι(≼)).

Proof. By Proposition 6.2 and Corollary 3.5 in [10], it is obvious.

Proposition 6.4. Let (X,≼) be the preordered approximation space,
and put R = ι(≼). Then R(A) = A if and only if A(1,0) is an upper set
in (X,≼).

Proof.

R(A) = A ⇔ A is an upper set in (X, ι(≼))

⇔ A(x) ≤ A(y) whenever x ≼ y

⇔ x ∈ χA(1,0)
implies y ∈ χA(1,0)

whenever x ≼ y

⇔ A(1,0) is an upper set in (X,≼).

Theorem 6.5. The following diagram commutes.

PrApp Top

IFPrApp IFTop

//Γ

��

ι

��

ω

//Φ

Proof. Suppose that (X,≼) is a preordered approximation space.
Then ι(≼)(x, y) = (1, 0) if x ≼ y; otherwise ι(≼)(x, y) = (0, 1). So,
if we take an IF set A in Φ

(
ι(X,≼)

)
, then, by the definition of Φ,

R(A) = A where R = ι(≼). On the other hand, Γ(≼) is the fam-
ily of all upper sets of (X,≼). And ω

(
Γ(≼)

)
is generated by {χU |

U is an upper set of (X,≼)}
⋃
{(̃a, b) | (a, b) ∈ I ⊗ I}. So, by Proposi-

tion 6.4, ω
(
Γ(X)

)
= Φ

(
ι(X)

)
.
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Example 6.6. Let X = [0, 1] and ≼ an usual order on X. Then
([0, 1],≼) is a preordered approximation space. Put R = ι(≼). Then we
have the following;

R(x, y) =

{
(1, 0) if x ≼ y,

(0, 1) otherwise.

Now, we will construct Φ
(
R
)
. First of all, (̃a, b) ∈ Φ

(
R
)
, because

R
(
(̃a, b)

)
= (̃a, b) if R is reflexive. And, by Proposition 6.3, R

(
A
)
=

A ⇔ A is an upper set in ([0, 1],R) for any A ∈ IF(X). Since A(x) ∧
R(x, y) ≤ A(y) for all x, y ∈ [0, 1], A : [0, 1] → [0, 1] is clearly an in-

creasing function, i.e. an order-preserving function. So Φ
(
R
)
= {(̃a, b) |

(a, b) ∈ I ⊗ I}
⋃
{A ∈ IF(X) | A is order-preserving }. On the contrary,

Γ(≼) is the collection of all upper sets in ([0, 1],≼). Then ω
(
Γ(≼)

)
is

the intuitionistic fuzzy topology generated by {χA | A ∈ Γ(≼)}
⋃
{(̃a, b) |

(a, b) ∈ I ⊗ I}. Hence Φ
(
ι(≼)

)
= ω

(
Γ(≼)

)
.

7. Conclusion

In this paper, we provided a detailed analysis of the categorical re-
lationship between four different spaces that we have studied. We de-
scribed how the topological space and the approximation space, as well
as the intuitionistic fuzzy topological space and the intuitionistic fuzzy
approximation space, are closely related to each other. We also showed
that there is a Galois correspondence between the functors of these cat-
egories. Additionally, by applying certain limitations on the category
of intuitionistic fuzzy topological spaces, we obtained an isomorphism
between these categories. We hope that the results of this paper will aid
in further research in various fields such as mathematics and computer
applications.
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