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VOLUME PROPERTIES AND A CHARACTERIZATION

OF ELLIPTIC PARABOLOIDS

Dong-Soo Kim, Kyung Bum Lee, Booseon Song, Incheon
Kim, and Min Seong Hwang

Abstract. We establish a characterization theorem of elliptic paraboloids
in the (n+1)-dimensional Euclidean space En+1 with extrinsic prop-
erties such as the (n+1)-dimensional volumes of regions enclosed by
the hyperplanes and hypersurfaces, and the n-dimensional areas of
projections of the sections of hypersurfaces cut off by hyperplanes.

1. Introduction

Suppose that M is a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space En+1. For a fixed point p ∈ M and a
sufficiently small t > 0, let us denote by Φ a hyperplane which intersects
M and is parallel to the tangent hyperplane Ψ of M at p with distance
t. We aim to characterize elliptic paraboloids in the (n+1)-dimensional
Euclidean space En+1 by using the n-dimensional areas of projections of
the sections cut off by hyperplanes and the (n+1)-dimensional volumes
of regions enclosed by the hyperplanes and hypersurfaces. In order to do
so, we denote by Ap(t) and Vp(t) the n-dimensional area of the section
in Φ enclosed by Φ∩M and the (n+1)-dimensional volume of the region
bounded by the hypersurface M and the hyperplane Φ, respectively.

If M is a smooth convex hypersurface in the (n + 1)-dimensional
Euclidean space En+1 defined by the graph of a convex function f :
Rn → R, for a fixed point p = (x, f(x)) ∈ M and a real number k > 0,
we put Φ the hyperplane through v = (x, f(x) + k) which is parallel to
the tangent hyperplane Ψ of M at p. We denote by A∗

p(k), V
∗
p (k) and

D∗
p(k) the n-dimensional area of the section in Φ enclosed by Φ∩M , the

(n + 1)-dimensional volume of the region of En+1 bounded by M and
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Figure 1. A∗
p(1) and V ∗

p (1) for p = (1, 1) and f(x) = x2.

Figure 2. D∗
p(1) for p = (1, 1) and f(x) = x2.

the hyperplane Φ and the n-dimensional area of the projection of the
section in Φ enclosed by Φ ∩M onto Rn, respectively. In this case, for
a fixed point p ∈ M and a sufficiently small t > 0 we may define Dp(t)
as the area of the projection of the section in Φ enclosed by Φ∩M onto
Rn, where Φ is the hyperplane which intersects M and is parallel to the
tangent hyperplane Ψ of M at p with distance t. See Figures 1 and 2.

Let us denote W (p) =
√

1 + |∇f(x)|2, where p = (x, f(x)) ∈ M and
∇f is the gradient of f . Then we have

(1.1) D∗
p(k) = A∗

p(k)/W (p).

For details, see Section 2.
For elliptic paraboloids in the (n + 1)-dimensional Euclidean space

En+1, the following characterization theorem has been established ([10,
11]).
Proposition 1. Let M be a smooth convex hypersurface in the (n+1)-
dimensional Euclidean space En+1 defined by the graph of a convex
function f : Rn → R. Suppose that the Gauss-Kronecker curvature
K(p) of M at p with respect to the upward unit normal to M is positive
at some point p ∈ M . Then M is an elliptic paraboloid if and only if it
satisfies one of the following conditions:
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(V ∗): V ∗
p (k) is a positive function, which depends only on k.

(D∗): D∗
p(k) in (1.1) is a positive function, which depends only on k.

On the other hand, the following characterization theorem of parabo-
las was established (Theorem 1 of [21]).

Proposition 2. Suppose that f(x) is a differentiable function and for all
real numbers a and h with h > 0, l(a, h, x) is the secant line determined
by the two points (a, f(a)) and (a + h, f(a + h)) on the graph of f(x),
separated horizontally by h units. Then f(x) is a parabola if and only
if the signed area

A(a, h) =

∫ a+h

a
l(a, h, x)dx−

∫ a+h

a
f(x)dx

between the line l(a, h, x) and the function f(x) over the interval [a, a+h]
is a nonzero function of h alone, not dependent on a.

In the convex cases, Proposition 2 can be rewritten as follows:

Proposition 3. Suppose that f : R → R is a convex differentiable
function and M is its graph. Then M is a parabola if and only if it
satisfies

(V ∗D) : V ∗
p (k) is a positive function ϕ(D), which depends only on D =

D∗
p(k).

Hence, it is quite reasonable to ask whether the above condition
(V ∗D) also characterize the elliptic paraboloids in the (n+1)-dimensional
Euclidean space En+1.

In this paper, in Section 3 we prove the following characterization
theorem of elliptic paraboloids, which is an n-dimensional analogue of
Proposition 3.

Theorem 4. Let M be a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space En+1 defined by the graph of a convex
function f : Rn → R. Suppose that the Gauss-Kronecker curvature
K(p) of M at p with respect to the upward unit normal to M is positive
at some point p ∈ M . Then M is an elliptic paraboloid if and only if it
satisfies the following condition:

(V ∗D): V ∗
p (k) is a positive function ϕ(D), which depends only on D =

D∗
p(k).

Various properties of conic sections (especially, parabolas) have been
proved to be characteristic ones ([1, 2, 4, 7, 8, 12, 14, 15, 17, 19, 21, 24]).
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Some characterization theorems for hyperplanes, circular hypercylin-
ders, hyperspheres, ellipsoids, elliptic paraboloids and elliptic hyper-
boloids in the Euclidean space En+1 were established in [3, 4, 6, 9, 10, 11,
13, 18, 22]. For a characterization of hyperbolic space in the Minkowski
space En+1

1 , we refer to [16].

Throughout this article, all objects are smooth(C2) and connected,
unless otherwise mentioned.

2. Preliminaries

Suppose that M is a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space En+1. For a fixed point p ∈ M and a
sufficiently small t > 0, we make use of notations: Ap(t), Vp(t) and Dp(t)
defined in Section 1. We may introduce a coordinate system (x, z) =
(x1, x2, · · · , xn, z) of En+1 with the origin p, the tangent space of M at p
is the hyperplane z = 0. Furthermore, we may assume that M is locally
the graph of a non-negative convex function f : Rn → R.

Then, for a sufficiently small t > 0 we have

Ap(t) =

∫∫
f(x)<t

1dx

and

Vp(t) =

∫∫
f(x)<t

{t− f(x)}dx,

where x = (x1, x2, · · · , xn), dx = dx1dx2 · · · dxn. Since we also have

Vp(t) =

∫∫
f(x)<t

{t− f(x)}dx

=

∫ t

z=0
{
∫∫

f(x)<z
1dx}dz,

the fundamental theorem of calculus shows that

(2.1) V ′
p(t) =

∫∫
f(x)<t

1dx = Ap(t).

We have the following ([11]).
Lemma 5. Suppose that the Gauss-Kronecker curvature K(p) of M at
p is positive with respect to the upward unit normal to M . Then we
have the following:
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(2.2) lim
t→0

1

(
√
t)n

Ap(t) =
(
√
2)nωn√
K(p)

,

(2.3) lim
t→0

1

(
√
t)n+2

Vp(t) =
(
√
2)n+2ωn

(n+ 2)
√
K(p)

,

where ωn denotes the volume of the n-dimensional unit ball.
Now, suppose that M is a smooth convex hypersurface in the (n+1)-

dimensional Euclidean space En+1 defined by the graph of a convex
function f : Rn → R. For a fixed point p = (x, f(x)) ∈ M and a positive
number k, we adopt the following notations: A∗

p(k), V
∗
p (k), D

∗
p(k) and

Dp(t) defined in Section 1.
If we denote by θ the angle between the tangent hyperplane Ψ of M

at p and Rn, then we have

(2.4) cos θ =
1

W (p)
,

where we put for the gradient ∇f of f

W (p) =
√
1 + |∇f(x)|2.

For a positive number t with k = tW (p), we have cos θ = 1/W (p) = t/k.
Hence we get

(2.5) V ∗
p (k) = Vp(t), A∗

p(k) = Ap(t) and D∗
p(k) = Dp(t).

Furthermore, it follows from (2.5) that

(2.6) D∗
p(k) = A∗

p(k)/W (p),

and

(2.7) Dp(t) = Ap(t)/W (p).

Using k = tW (p), together with (2.5) and (2.6), Lemma 5 implies the
following.
Lemma 6. Suppose that M is a smooth convex hypersurface in the
(n + 1)-dimensional Euclidean space En+1 defined by the graph of a
convex function f : Rn → R. For a fixed point p = (x, f(x)) ∈ M ,
we suppose that the Gauss-Kronecker curvature K(p) of M at p with
respect to the upward unit normal to M is positive. Then we have the
following:
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(2.8) lim
k→0

1

(
√
k)n

A∗
p(k) =

(
√
2)nωn√
K(p)

× 1

(
√
W (p))n

,

(2.9) lim
k→0

1

(
√
k)n+2

V ∗
p (k) =

(
√
2)n+2ωn

(n+ 2)
√

K(p)
× 1

(
√
W (p))n+2

,

(2.10) lim
k→0

1

(
√
k)n

D∗
p(k) =

(
√
2)nωn√
K(p)

× 1

(
√
W (p))n+2

,

where ωn denotes the volume of the n-dimensional unit ball.

3. Proof of Theorem 4

In this section, we give a proof of Theorem 4 stated in Section 1.
Let us denote by M a smooth convex hypersurface in the (n + 1)-

dimensional Euclidean space En+1 defined by the graph of a convex
function f : Rn → R.

First, suppose that the hypersurface M satisfies (V ∗D). Then V ∗
p (k)

is a positive function ϕ(D), which depends only on D = D∗
p(k). Hence

we have

(3.1)
V ∗
p (k)

(
√
k)n+2

=
ϕ(D)

D(n+2)/n
×

(D∗
p(k))

(n+2)/n

(
√
k)n+2

.

It follows from (2.10) in Lemma 6 that
(3.2)

lim
k→0

(D∗
p(k))

(n+2)/n

(
√
k)n+2

= lim
k→0

{
D∗

p(k)

(
√
k)n

}(n+2)/n =
(
√
2)n+2ω

(n+2)/n
n

(
√
K(p))(n+2)/n

× 1

(
√
W (p))(n+2)2/n

.

By the assumption, we have

lim
D→0

ϕ(D)

D(n+2)/n
= δ,

where δ is a constant independent of p. Hence together with (2.9),(3.1),
and (3.2) we obtain

(
√
2)n+2ωn

(n+ 2)
√
K(p)

× 1

(
√
W (p))n+2

= δ × (
√
2)n+2ω

(n+2)/n
n

(
√
K(p))(n+2)/n

× 1

(
√
W (p))(n+2)2/n

,
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from which we get

(3.3) K(p) = (n+ 2)nδnω2
n

1

W (p)n+2
.

Note that the Gauss-Kronecker curvature K(p) of M at p is given by
([23], p.93)

(3.4) K(p) =
detD2f(x)

W (p)n+2
.

It follows from (3.3) and (3.4) that the determinant detD2f(x) of the
Hessian of the function f is a positive constant. Thus f(x) is a glob-
ally defined quadratic polynomial ([5, 20]), and hence M is an elliptic
paraboloid. This completes the proof of the if part of Theorem 4.

Conversely, let us consider an elliptic paraboloid defined by

M : z = f(x) = Σn
i=1a

2
ix

2
i , ai > 0,

a tangent hyperplane Ψ to M at a fixed point p = (x, z) ∈ M and a
hyperplane Φ through v = (x, z + k), k > 0 which is parallel to the
tangent hyperplane Ψ to M at p. Then the proof of Theorem 5 of [11]
shows that

(3.5) V ∗
p (k) = αnk

(n+2)/2, αn =
2σn−1

n(n+ 2)a1a2 · · · an
,

where σn−1 denotes the surface area of the (n − 1)-dimensional unit
sphere. Hence, from (2.5) with k = tW (p) we have

Vp(t) = αnW (p)(n+2)/2t(n+2)/2.

It follows from (2.1) that

Ap(t) = βnW (p)(n+2)/2tn/2, βn =
n+ 2

2
αn

and hence we get from k = tW (p)

A∗
p(k) = βnW (p)kn/2.

Using (2.6), we have

(3.6) D∗
p(k) =

1

W (p)
A∗

p(k) = βnk
n/2.

Together with (3.6), (3.5) implies

V ∗
p (k) = γnD

∗
p(k)

(n+2)/n, γn =
αn

(βn)(n+2)/n
.

This completes the proof of the only if part of Theorem 4.
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[2] Á. Bényi, P. Szeptycki and F. Van Vleck, A generalized Archimedean property,
Real Anal. Exchange, 29 (2003/04), 881–889.

[3] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundla-
gen von Einsteins Relativitatstheorie, Band I, Elementare Differentialgeometrie,
(German) 3rd ed., Dover Publications, New York, N. Y., 1945.

[4] O. Ciaurri, E. Fernandez and L. Roncal, Revisiting floating bodies, Expo. Math.,
34 (2016), no. 4, 396–422.
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