VOLUME PROPERTIES AND A CHARACTERIZATION OF ELLIPTIC PARABOLOIDS

Dong-Soo Kim, Kyung Bum Lee, Booseon Song, Incheon Kim, and Min Seong Hwang

Abstract

We establish a characterization theorem of elliptic paraboloids in the ($n+1$)-dimensional Euclidean space \mathbb{E}^{n+1} with extrinsic properties such as the ($n+1$)-dimensional volumes of regions enclosed by the hyperplanes and hypersurfaces, and the n-dimensional areas of projections of the sections of hypersurfaces cut off by hyperplanes.

1. Introduction

Suppose that M is a smooth convex hypersurface in the $(n+1)$ dimensional Euclidean space \mathbb{E}^{n+1}. For a fixed point $p \in M$ and a sufficiently small $t>0$, let us denote by Φ a hyperplane which intersects M and is parallel to the tangent hyperplane Ψ of M at p with distance t. We aim to characterize elliptic paraboloids in the ($n+1$)-dimensional Euclidean space \mathbb{E}^{n+1} by using the n-dimensional areas of projections of the sections cut off by hyperplanes and the ($n+1$)-dimensional volumes of regions enclosed by the hyperplanes and hypersurfaces. In order to do so, we denote by $A_{p}(t)$ and $V_{p}(t)$ the n-dimensional area of the section in Φ enclosed by $\Phi \cap M$ and the $(n+1)$-dimensional volume of the region bounded by the hypersurface M and the hyperplane Φ, respectively.

If M is a smooth convex hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{E}^{n+1} defined by the graph of a convex function f : $\mathbb{R}^{n} \rightarrow \mathbb{R}$, for a fixed point $p=(x, f(x)) \in M$ and a real number $k>0$, we put Φ the hyperplane through $v=(x, f(x)+k)$ which is parallel to the tangent hyperplane Ψ of M at p. We denote by $A_{p}^{*}(k), V_{p}^{*}(k)$ and $D_{p}^{*}(k)$ the n-dimensional area of the section in Φ enclosed by $\Phi \cap M$, the $(n+1)$-dimensional volume of the region of \mathbb{E}^{n+1} bounded by M and

[^0]

Figure 1. $A_{p}^{*}(1)$ and $V_{p}^{*}(1)$ for $p=(1,1)$ and $f(x)=x^{2}$.

Figure 2. $D_{p}^{*}(1)$ for $p=(1,1)$ and $f(x)=x^{2}$.
the hyperplane Φ and the n-dimensional area of the projection of the section in Φ enclosed by $\Phi \cap M$ onto \mathbb{R}^{n}, respectively. In this case, for a fixed point $p \in M$ and a sufficiently small $t>0$ we may define $D_{p}(t)$ as the area of the projection of the section in Φ enclosed by $\Phi \cap M$ onto \mathbb{R}^{n}, where Φ is the hyperplane which intersects M and is parallel to the tangent hyperplane Ψ of M at p with distance t. See Figures 1 and 2 .

Let us denote $W(p)=\sqrt{1+|\nabla f(x)|^{2}}$, where $p=(x, f(x)) \in M$ and ∇f is the gradient of f. Then we have

$$
\begin{equation*}
D_{p}^{*}(k)=A_{p}^{*}(k) / W(p) . \tag{1.1}
\end{equation*}
$$

For details, see Section 2.
For elliptic paraboloids in the $(n+1)$-dimensional Euclidean space \mathbb{E}^{n+1}, the following characterization theorem has been established ($[10$, 11]).
Proposition 1. Let M be a smooth convex hypersurface in the $(n+1)$ dimensional Euclidean space \mathbb{E}^{n+1} defined by the graph of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose that the Gauss-Kronecker curvature $K(p)$ of M at p with respect to the upward unit normal to M is positive at some point $p \in M$. Then M is an elliptic paraboloid if and only if it satisfies one of the following conditions:
$\left(V^{*}\right): V_{p}^{*}(k)$ is a positive function, which depends only on k.
$\left(D^{*}\right): D_{p}^{*}(k)$ in (1.1) is a positive function, which depends only on k.
On the other hand, the following characterization theorem of parabolas was established (Theorem 1 of [21]).

Proposition 2. Suppose that $f(x)$ is a differentiable function and for all real numbers a and h with $h>0, l(a, h, x)$ is the secant line determined by the two points $(a, f(a))$ and $(a+h, f(a+h))$ on the graph of $f(x)$, separated horizontally by h units. Then $f(x)$ is a parabola if and only if the signed area

$$
A(a, h)=\int_{a}^{a+h} l(a, h, x) d x-\int_{a}^{a+h} f(x) d x
$$

between the line $l(a, h, x)$ and the function $f(x)$ over the interval $[a, a+h]$ is a nonzero function of h alone, not dependent on a.

In the convex cases, Proposition 2 can be rewritten as follows:
Proposition 3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex differentiable function and M is its graph. Then M is a parabola if and only if it satisfies
$\left(V^{*} D\right): V_{p}^{*}(k)$ is a positive function $\phi(D)$, which depends only on $D=$ $D_{p}^{*}(k)$.

Hence, it is quite reasonable to ask whether the above condition $\left(V^{*} D\right)$ also characterize the elliptic paraboloids in the ($n+1$)-dimensional Euclidean space \mathbb{E}^{n+1}.

In this paper, in Section 3 we prove the following characterization theorem of elliptic paraboloids, which is an n-dimensional analogue of Proposition 3.
Theorem 4. Let M be a smooth convex hypersurface in the $(n+1)$ dimensional Euclidean space \mathbb{E}^{n+1} defined by the graph of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose that the Gauss-Kronecker curvature $K(p)$ of M at p with respect to the upward unit normal to M is positive at some point $p \in M$. Then M is an elliptic paraboloid if and only if it satisfies the following condition:
$\left(V^{*} D\right): V_{p}^{*}(k)$ is a positive function $\phi(D)$, which depends only on $D=$ $D_{p}^{*}(k)$.

Various properties of conic sections (especially, parabolas) have been proved to be characteristic ones ($[1,2,4,7,8,12,14,15,17,19,21,24]$).

Some characterization theorems for hyperplanes, circular hypercylinders, hyperspheres, ellipsoids, elliptic paraboloids and elliptic hyperboloids in the Euclidean space \mathbb{E}^{n+1} were established in $[3,4,6,9,10,11$, 13, 18, 22]. For a characterization of hyperbolic space in the Minkowski space \mathbb{E}_{1}^{n+1}, we refer to [16].

Throughout this article, all objects are $\operatorname{smooth}\left(C^{2}\right)$ and connected, unless otherwise mentioned.

2. Preliminaries

Suppose that M is a smooth convex hypersurface in the $(n+1)$ dimensional Euclidean space \mathbb{E}^{n+1}. For a fixed point $p \in M$ and a sufficiently small $t>0$, we make use of notations: $A_{p}(t), V_{p}(t)$ and $D_{p}(t)$ defined in Section 1. We may introduce a coordinate system $(x, z)=$ $\left(x_{1}, x_{2}, \cdots, x_{n}, z\right)$ of \mathbb{E}^{n+1} with the origin p, the tangent space of M at p is the hyperplane $z=0$. Furthermore, we may assume that M is locally the graph of a non-negative convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Then, for a sufficiently small $t>0$ we have

$$
A_{p}(t)=\iint_{f(x)<t} 1 d x
$$

and

$$
V_{p}(t)=\iint_{f(x)<t}\{t-f(x)\} d x,
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), d x=d x_{1} d x_{2} \cdots d x_{n}$. Since we also have

$$
\begin{aligned}
V_{p}(t) & =\iint_{f(x)<t}\{t-f(x)\} d x \\
& =\int_{z=0}^{t}\left\{\iint_{f(x)<z} 1 d x\right\} d z,
\end{aligned}
$$

the fundamental theorem of calculus shows that

$$
\begin{equation*}
V_{p}^{\prime}(t)=\iint_{f(x)<t} 1 d x=A_{p}(t) \tag{2.1}
\end{equation*}
$$

We have the following ([11]).
Lemma 5. Suppose that the Gauss-Kronecker curvature $K(p)$ of M at p is positive with respect to the upward unit normal to M. Then we have the following:

$$
\begin{gather*}
\lim _{t \rightarrow 0} \frac{1}{(\sqrt{t})^{n}} A_{p}(t)=\frac{(\sqrt{2})^{n} \omega_{n}}{\sqrt{K(p)}} \tag{2.2}\\
\lim _{t \rightarrow 0} \frac{1}{(\sqrt{t})^{n+2}} V_{p}(t)=\frac{(\sqrt{2})^{n+2} \omega_{n}}{(n+2) \sqrt{K(p)}} \tag{2.3}
\end{gather*}
$$

where ω_{n} denotes the volume of the n-dimensional unit ball.
Now, suppose that M is a smooth convex hypersurface in the $(n+1)$ dimensional Euclidean space \mathbb{E}^{n+1} defined by the graph of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. For a fixed point $p=(x, f(x)) \in M$ and a positive number k, we adopt the following notations: $A_{p}^{*}(k), V_{p}^{*}(k), D_{p}^{*}(k)$ and $D_{p}(t)$ defined in Section 1.

If we denote by θ the angle between the tangent hyperplane Ψ of M at p and \mathbb{R}^{n}, then we have

$$
\begin{equation*}
\cos \theta=\frac{1}{W(p)}, \tag{2.4}
\end{equation*}
$$

where we put for the gradient ∇f of f

$$
W(p)=\sqrt{1+|\nabla f(x)|^{2}}
$$

For a positive number t with $k=t W(p)$, we have $\cos \theta=1 / W(p)=t / k$. Hence we get

$$
\begin{equation*}
V_{p}^{*}(k)=V_{p}(t), \quad A_{p}^{*}(k)=A_{p}(t) \quad \text { and } \quad D_{p}^{*}(k)=D_{p}(t) \tag{2.5}
\end{equation*}
$$

Furthermore, it follows from (2.5) that

$$
\begin{equation*}
D_{p}^{*}(k)=A_{p}^{*}(k) / W(p) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{p}(t)=A_{p}(t) / W(p) \tag{2.7}
\end{equation*}
$$

Using $k=t W(p)$, together with (2.5) and (2.6), Lemma 5 implies the following.
Lemma 6. Suppose that M is a smooth convex hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{E}^{n+1} defined by the graph of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. For a fixed point $p=(x, f(x)) \in M$, we suppose that the Gauss-Kronecker curvature $K(p)$ of M at p with respect to the upward unit normal to M is positive. Then we have the following:

$$
\begin{align*}
\lim _{k \rightarrow 0} \frac{1}{(\sqrt{k})^{n}} A_{p}^{*}(k) & =\frac{(\sqrt{2})^{n} \omega_{n}}{\sqrt{K(p)}} \times \frac{1}{(\sqrt{W(p)})^{n}} \tag{2.8}\\
\lim _{k \rightarrow 0} \frac{1}{(\sqrt{k})^{n+2}} V_{p}^{*}(k) & =\frac{(\sqrt{2})^{n+2} \omega_{n}}{(n+2) \sqrt{K(p)}} \times \frac{1}{(\sqrt{W(p)})^{n+2}}
\end{align*}
$$

$$
\lim _{k \rightarrow 0} \frac{1}{(\sqrt{k})^{n}} D_{p}^{*}(k)=\frac{(\sqrt{2})^{n} \omega_{n}}{\sqrt{K(p)}} \times \frac{1}{(\sqrt{W(p)})^{n+2}}
$$

where ω_{n} denotes the volume of the n-dimensional unit ball.

3. Proof of Theorem 4

In this section, we give a proof of Theorem 4 stated in Section 1.
Let us denote by M a smooth convex hypersurface in the $(n+1)$ dimensional Euclidean space \mathbb{E}^{n+1} defined by the graph of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

First, suppose that the hypersurface M satisfies $\left(V^{*} D\right)$. Then $V_{p}^{*}(k)$ is a positive function $\phi(D)$, which depends only on $D=D_{p}^{*}(k)$. Hence we have

$$
\begin{equation*}
\frac{V_{p}^{*}(k)}{(\sqrt{k})^{n+2}}=\frac{\phi(D)}{D^{(n+2) / n}} \times \frac{\left(D_{p}^{*}(k)\right)^{(n+2) / n}}{(\sqrt{k})^{n+2}} \tag{3.1}
\end{equation*}
$$

It follows from (2.10) in Lemma 6 that
$\lim _{k \rightarrow 0} \frac{\left(D_{p}^{*}(k)\right)^{(n+2) / n}}{(\sqrt{k})^{n+2}}=\lim _{k \rightarrow 0}\left\{\frac{D_{p}^{*}(k)}{(\sqrt{k})^{n}}\right\}^{(n+2) / n}=\frac{(\sqrt{2})^{n+2} \omega_{n}^{(n+2) / n}}{(\sqrt{K(p)})^{(n+2) / n}} \times \frac{1}{(\sqrt{W(p)})^{(n+2)^{2} / n}}$.
By the assumption, we have

$$
\lim _{D \rightarrow 0} \frac{\phi(D)}{D^{(n+2) / n}}=\delta
$$

where δ is a constant independent of p. Hence together with (2.9),(3.1), and (3.2) we obtain

$$
\frac{(\sqrt{2})^{n+2} \omega_{n}}{(n+2) \sqrt{K(p)}} \times \frac{1}{(\sqrt{W(p)})^{n+2}}=\delta \times \frac{(\sqrt{2})^{n+2} \omega_{n}^{(n+2) / n}}{(\sqrt{K(p)})^{(n+2) / n}} \times \frac{1}{(\sqrt{W(p)})^{(n+2)^{2} / n}}
$$

from which we get

$$
\begin{equation*}
K(p)=(n+2)^{n} \delta^{n} \omega_{n}^{2} \frac{1}{W(p)^{n+2}} \tag{3.3}
\end{equation*}
$$

Note that the Gauss-Kronecker curvature $K(p)$ of M at p is given by ([23], p.93)

$$
\begin{equation*}
K(p)=\frac{\operatorname{det} D^{2} f(x)}{W(p)^{n+2}} \tag{3.4}
\end{equation*}
$$

It follows from (3.3) and (3.4) that the determinant $\operatorname{det} D^{2} f(x)$ of the Hessian of the function f is a positive constant. Thus $f(x)$ is a globally defined quadratic polynomial $([5,20])$, and hence M is an elliptic paraboloid. This completes the proof of the if part of Theorem 4.

Conversely, let us consider an elliptic paraboloid defined by

$$
M: z=f(x)=\Sigma_{i=1}^{n} a_{i}^{2} x_{i}^{2}, a_{i}>0
$$

a tangent hyperplane Ψ to M at a fixed point $p=(x, z) \in M$ and a hyperplane Φ through $v=(x, z+k), k>0$ which is parallel to the tangent hyperplane Ψ to M at p. Then the proof of Theorem 5 of [11] shows that

$$
\begin{equation*}
V_{p}^{*}(k)=\alpha_{n} k^{(n+2) / 2}, \quad \alpha_{n}=\frac{2 \sigma_{n-1}}{n(n+2) a_{1} a_{2} \cdots a_{n}} \tag{3.5}
\end{equation*}
$$

where σ_{n-1} denotes the surface area of the $(n-1)$-dimensional unit sphere. Hence, from (2.5) with $k=t W(p)$ we have

$$
V_{p}(t)=\alpha_{n} W(p)^{(n+2) / 2} t^{(n+2) / 2}
$$

It follows from (2.1) that

$$
A_{p}(t)=\beta_{n} W(p)^{(n+2) / 2} t^{n / 2}, \quad \beta_{n}=\frac{n+2}{2} \alpha_{n}
$$

and hence we get from $k=t W(p)$

$$
A_{p}^{*}(k)=\beta_{n} W(p) k^{n / 2}
$$

Using (2.6), we have

$$
\begin{equation*}
D_{p}^{*}(k)=\frac{1}{W(p)} A_{p}^{*}(k)=\beta_{n} k^{n / 2} \tag{3.6}
\end{equation*}
$$

Together with (3.6), (3.5) implies

$$
V_{p}^{*}(k)=\gamma_{n} D_{p}^{*}(k)^{(n+2) / n}, \quad \gamma_{n}=\frac{\alpha_{n}}{\left(\beta_{n}\right)^{(n+2) / n}}
$$

This completes the proof of the only if part of Theorem 4.

References

[1] Á. Bényi, P. Szeptycki and F. Van Vleck, Archimedean properties of parabolas, Amer. Math. Monthly, 107 (2000), 945-949.
[2] Á. Bényi, P. Szeptycki and F. Van Vleck, A generalized Archimedean property, Real Anal. Exchange, 29 (2003/04), 881-889.
[3] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitatstheorie, Band I, Elementare Differentialgeometrie, (German) 3rd ed., Dover Publications, New York, N. Y., 1945.
[4] O. Ciaurri, E. Fernandez and L. Roncal, Revisiting floating bodies, Expo. Math., 34 (2016), no. 4, 396-422.
[5] K. Jörgens, Über die Losungen der Differentialgleichung $r t-s^{2}=1$, Math. Ann., 127(1954), 130-134.
[6] D.-S. Kim, Ellipsoids and elliptic hyperboloids in the Euclidean space \mathbb{E}^{n+1}, Linear Algebra Appl., 471 (2015), 28-45.
[7] D.-S. Kim and S. H. Kang, A characterization of conic sections, Honam Math. J., 33 (2011), 335-340.
[8] D.-S. Kim and Y. H. Kim, A characterization of ellipses, Amer. Math. Monthly, 114 (2007), 66-70.
[9] D.-S. Kim and Y. H. Kim, New characterizations of spheres, cylinders and W -curves, Linear Algebra Appl., 432 (2010), 3002-3006.
[10] D.-S. Kim and Y. H. Kim, Some characterizations of spheres and elliptic paraboloids, Linear Algebra Appl., 437 (2012), no. 1, 113-120.
[11] D.-S. Kim and Y. H. Kim, Some characterizations of spheres and elliptic paraboloids II, Linear Algebra Appl., 438 (2013) no.3, 1356-1364.
[12] D.-S. Kim and Y. H. Kim, On the Archimedean characterization of parabolas, Bull. Korean Math. Soc., 50 (2013), no. 6, 2103-2114.
[13] D.-S. Kim and Y. H. Kim, A characterization of concentric hyperspheres in \mathbb{R}^{n}, Bull. Korean Math. Soc., 51 (2014), 531-538.
[14] D.-S. Kim, Y. H. Kim and J. H. Park, Some characterizations of parabolas, Kyungpook Math. J., 53 (2013), 99-104.
[15] D.-S. Kim, S. Park and Y. H. Kim, Center of gravity and a characterization of parabolas, Kyungpook Math. J., 55 (2015), no. 2, 473-484.
[16] D.-S. Kim, Y. H. Kim and D. W. Yoon, On standard imbeddings of hyperbolic spaces in the Minkowski space, C. R. Math. Acad. Sci. Paris, 352 (2014), 10331038.
[17] D.-S. Kim and K.-C. Shim, Area of triangles associated with a curve, Bull. Korean Math. Soc., 51 (2014), 901-909.
[18] D.-S. Kim and B. Song, A characterization of elliptic hyperboloids, Honam Math. J., 35 (2013), 37-49.
[19] J. Krawczyk, On areas associated with a curve, Zesz. Nauk. Uniw. Opol. Mat., 29 (1995), 97-101.
[20] A. V. Pogorelov, On the improper convex affine hyperspheres, Geom. Dedicata, 1 (1972), no. 1, 33-46.
[21] B. Richmond and T. Richmond, How to recognize a parabola, Amer. Math. Monthly, 116 (2009), 910-922.
[22] O. Stamm, Umkehrung eines Satzes von Archimedes über die Kugel, Abh. Math. Sem. Univ. Hamburg, 17 (1951), 112-132.
[23] J. A. Thorpe, Elementary topics in differential geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979.
[24] Y. Yu and H. Liu, A characterization of parabola, Bull. Korean Math. Soc., 45 (2008), 631-634.

Dong-Soo Kim
Department of Mathematics
Chonnam National University
Gwangju 61186, Republic of Korea
E-mail: dosokim@chonnam.ac.kr
Kyung Bum Lee
Department of Mathematics
Chonnam National University
Gwangju 61186, Republic of Korea
E-mail: woochikb@naver.com
Booseon Song
Department of Mathematics
Chonnam National University
Gwangju 61186, Republic of Korea
E-mail: booseons@gmail.com
Incheon Kim
Department of Mathematics
Chonnam National University
Gwangju 61186, Republic of Korea
E-mail: goatham@jnu.ac.kr
Min Seong Hwang
Department of Mathematics
Chonnam National University
Gwangju 61186, Republic of Korea
E-mail: hurrycain7@naver.com

[^0]: Received January 31, 2023; Accepted May 15, 2023.
 2020 Mathematics Subject Classification: 53A07.
 Key words and phrases: Elliptic paraboloid; $(n+1)$-dimensional volume; n dimensional surface area; Gauss-Kronecker curvature.

