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KiM, AND MIN SEONG HWANG

ABSTRACT. We establish a characterization theorem of elliptic paraboloids
in the (n+1)-dimensional Euclidean space E™** with extrinsic prop-
erties such as the (n+1)-dimensional volumes of regions enclosed by
the hyperplanes and hypersurfaces, and the n-dimensional areas of
projections of the sections of hypersurfaces cut off by hyperplanes.

1. Introduction

Suppose that M is a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space E**!. For a fixed point p € M and a
sufficiently small ¢ > 0, let us denote by ® a hyperplane which intersects
M and is parallel to the tangent hyperplane ¥ of M at p with distance
t. We aim to characterize elliptic paraboloids in the (n + 1)-dimensional
Euclidean space E™*! by using the n-dimensional areas of projections of
the sections cut off by hyperplanes and the (n+ 1)-dimensional volumes
of regions enclosed by the hyperplanes and hypersurfaces. In order to do
so, we denote by A,(t) and V,(t) the n-dimensional area of the section
in ® enclosed by ® N M and the (n+1)-dimensional volume of the region
bounded by the hypersurface M and the hyperplane ®, respectively.

If M is a smooth convex hypersurface in the (n + 1)-dimensional
Euclidean space E"*! defined by the graph of a convex function f :
R™ — R, for a fixed point p = (, f(x)) € M and a real number k > 0,
we put @ the hyperplane through v = (z, f(z) + k) which is parallel to
the tangent hyperplane W of M at p. We denote by A5 (k), V' (k) and
D3 (k) the n-dimensional area of the section in ® enclosed by ® N M, the
(n + 1)-dimensional volume of the region of E"*! bounded by M and
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FIGURE 2. D3(1) for p = (1,1) and f(z) = 22,

the hyperplane ® and the n-dimensional area of the projection of the
section in ® enclosed by ® N M onto R"™, respectively. In this case, for
a fixed point p € M and a sufficiently small ¢ > 0 we may define D)(t)
as the area of the projection of the section in ® enclosed by ® N M onto
R"™, where ® is the hyperplane which intersects M and is parallel to the
tangent hyperplane W of M at p with distance t. See Figures 1 and 2.

Let us denote W (p) = /1 + |V f(2)|?, where p = (z, f(z)) € M and
Vf is the gradient of f. Then we have

(L.1) Dy (k) = A, (k)/W (p)-

For details, see Section 2.

For elliptic paraboloids in the (n 4 1)-dimensional Euclidean space

E"+1 the following characterization theorem has been established ([10,
11]).
Proposition 1. Let M be a smooth convex hypersurface in the (n+1)-
dimensional Euclidean space E"*! defined by the graph of a convex
function f : R™ — R. Suppose that the Gauss-Kronecker curvature
K(p) of M at p with respect to the upward unit normal to M is positive
at some point p € M. Then M is an elliptic paraboloid if and only if it
satisfies one of the following conditions:



A characterization of elliptic paraboloids 127

(V*): V7 (k) is a positive function, which depends only on k.

(D*): Dy(k) in (1.1) is a positive function, which depends only on .
On the other hand, the following characterization theorem of parabo-

las was established (Theorem 1 of [21]).

Proposition 2. Suppose that f(x) is a differentiable function and for all
real numbers a and h with A > 0, I(a, h, ) is the secant line determined
by the two points (a, f(a)) and (a + h, f(a + h)) on the graph of f(z),
separated horizontally by h units. Then f(x) is a parabola if and only
if the signed area

A(a, h) = / a+hl(a,h,x)d:c— / o f(z)dz

between the line [(a, h, z) and the function f(x) over the interval [a, a+h]
is a nonzero function of & alone, not dependent on a.

In the convex cases, Proposition 2 can be rewritten as follows:

Proposition 3. Suppose that f : R — R is a convex differentiable
function and M is its graph. Then M is a parabola if and only if it
satisfies

(V*D) : V,j (k) is a positive function ¢(D), which depends only on D =
Dy (k).

Hence, it is quite reasonable to ask whether the above condition
(V*D) also characterize the elliptic paraboloids in the (n+1)-dimensional
Euclidean space E*t1

In this paper, in Section 3 we prove the following characterization
theorem of elliptic paraboloids, which is an n-dimensional analogue of
Proposition 3.

Theorem 4. Let M be a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space E"*! defined by the graph of a convex
function f : R® — R. Suppose that the Gauss-Kronecker curvature
K(p) of M at p with respect to the upward unit normal to M is positive
at some point p € M. Then M is an elliptic paraboloid if and only if it
satisfies the following condition:

(V*D): V; (k) is a positive function ¢(D), which depends only on D =
D; (k).

Various properties of conic sections (especially, parabolas) have been
proved to be characteristic ones ([1, 2, 4, 7, 8, 12, 14, 15, 17, 19, 21, 24]).
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Some characterization theorems for hyperplanes, circular hypercylin-
ders, hyperspheres, ellipsoids, elliptic paraboloids and elliptic hyper-
boloids in the Euclidean space E"*! were established in [3, 4, 6, 9, 10, 11,
13, 18, 22]. For a characterization of hyperbolic space in the Minkowski
space Ef"M! we refer to [16].

Throughout this article, all objects are smooth(C?) and connected,
unless otherwise mentioned.

2. Preliminaries

Suppose that M is a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space E"*!. For a fixed point p € M and a
sufficiently small ¢ > 0, we make use of notations: Ay(t), V,,(t) and D)(t)
defined in Section 1. We may introduce a coordinate system (z,z) =
(21,22, ,Tn, 2) of E"*! with the origin p, the tangent space of M at p
is the hyperplane z = 0. Furthermore, we may assume that M is locally
the graph of a non-negative convex function f : R" — R.

Then, for a sufficiently small ¢ > 0 we have

Ap(t) = //f( - ldx

wmz/ﬂmﬁ—nmm

where x = (z1,x2, - ,2p), dv = dx1dzy - - - dx,. Since we also have
G = [[ (- s
flz)<t

t
= / {// ldz}dz,
z=0 flz)<z

the fundamental theorem of calculus shows that

(2.1) Vy(t) = //f(x)<t ldz = A,(t).

We have the following ([11]).
Lemma 5. Suppose that the Gauss-Kronecker curvature K (p) of M at
p is positive with respect to the upward unit normal to M. Then we
have the following:

and
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. a0 k)
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i vy = (Ve
=0 (VE)nt2 (n+2)/K(p)
where w,, denotes the volume of the n-dimensional unit ball.

Now, suppose that M is a smooth convex hypersurface in the (n+1)-
dimensional Euclidean space E"*! defined by the graph of a convex
function f : R™ — R. For a fixed point p = (x, f(x)) € M and a positive
number k, we adopt the following notations: Aj(k), V' (k), D, (k) and
D, (t) defined in Section 1.

If we denote by 0 the angle between the tangent hyperplane ¥ of M
at p and R”, then we have

(2.3)

Y

1
W(p)’
where we put for the gradient Vf of f

W(p) = V1+|Vf(z)P.

For a positive number ¢ with k = tW(p), we have cosf = 1/W (p) = t/k.
Hence we get

(25) Vi) = V() An(k) = A,(t) and Dj(k) = Dy(t).

(2.4) cosf =

Furthermore, it follows from (2.5) that

(2.6) Dy (k) = Ap(k)/W (p),
and
(2.7) Dp(t) = Ap(t)/W (p).

Using k = tW (p), together with (2.5) and (2.6), Lemma 5 implies the
following.
Lemma 6. Suppose that M is a smooth convex hypersurface in the
(n + 1)-dimensional Euclidean space E"*! defined by the graph of a
convex function f : R — R. For a fixed point p = (z, f(x)) € M,
we suppose that the Gauss-Kronecker curvature K(p) of M at p with
respect to the upward unit normal to M is positive. Then we have the
following;:
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where w,, denotes the volume of the n-dimensional unit ball.

3. Proof of Theorem 4

In this section, we give a proof of Theorem 4 stated in Section 1.

Let us denote by M a smooth convex hypersurface in the (n + 1)-
dimensional Euclidean space E"*! defined by the graph of a convex
function f : R™ — R.

First, suppose that the hypersurface M satisfies (V*D). Then V' (k)
is a positive function ¢(D), which depends only on D = D/ (k). Hence
we have

Vi) _ eD) (D)
(Vk)n+2 ~ D(n+2)/n (VE)n+2
It follows from (2.10) in Lemma 6 that

(3.1)

(3.2)
W = {M}(nﬂ)/n — (ﬁ)n+2w%n+2)/n y 1
P (Vk)n+2 =550 (V) - (/K (p)m+2/n = ( W(p))(n+2)2/n'

By the assumption, we have
- ¢(D)
B Deam = O

where 0 is a constant independent of p. Hence together with (2.9),(3.1),
and (3.2) we obtain

(ﬁ)n+2wn 1 (\/i)n+2w£tn+2)/n 1

=9 ,
nt2VED) ST (VR (W)




A characterization of elliptic paraboloids 131

from which we get
1
— nen, 2

(33) K(p) - (7’L + 2) 5 wn W(p)”"'Q :

Note that the Gauss-Kronecker curvature K (p) of M at p is given by
([23], p.93)

det D% f(x)
3.4 K(p) = —— 4\

It follows from (3.3) and (3.4) that the determinant det D?f(x) of the
Hessian of the function f is a positive constant. Thus f(z) is a glob-
ally defined quadratic polynomial ([5, 20]), and hence M is an elliptic
paraboloid. This completes the proof of the if part of Theorem 4.
Conversely, let us consider an elliptic paraboloid defined by

M :z=f(x) =X 0?22 a; > 0,

171
a tangent hyperplane ¥ to M at a fixed point p = (z,z) € M and a
hyperplane ® through v = (z,z + k),k > 0 which is parallel to the
tangent hyperplane ¥ to M at p. Then the proof of Theorem 5 of [11]
shows that

(3.5) Vr(k) = ank"t2 =

2001

n(n+2)aias - a,’

where 0,1 denotes the surface area of the (n — 1)-dimensional unit
sphere. Hence, from (2.5) with k¥ = tW(p) we have

Vp(t) _ Oan(p)(n+2)/2t(n+2)/2.
It follows from (2.1) that

n—+ 2
9 “n

Ap(t) = BuW (p) D22, B, =
and hence we get from k = tW(p)
* n/2
A5(K) = BuW (k™.
Using (2.6), we have
b
W(p)
Together with (3.6), (3.5) implies

* * n+2)/n _
Vi (k) = 4Dy (k) T2/ =

(3.6) DX (k) = A5 (k) = Bk,

Qp

(Br)(F2)/n
This completes the proof of the only if part of Theorem 4.
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