DOI QR코드

DOI QR Code

Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK

  • Young Woo Kim (School of Korean Medicine, Dongguk University) ;
  • Seon Been Bak (School of Korean Medicine, Dongguk University) ;
  • Won-Yung Lee (School of Korean Medicine, Dongguk University) ;
  • Su Jin Bae (School of Korean Medicine, Dongguk University) ;
  • Eun Hye Lee (College of Medicine, Kyungpook National University) ;
  • Ju-Hye Yang (Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine) ;
  • Kwang Youn Kim (Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine) ;
  • Chang Hyun Song (MRC center, College of Korean Medicine, Daegu Haany University) ;
  • Sang Chan Kim (MRC center, College of Korean Medicine, Daegu Haany University) ;
  • Un-Jung Yun (School of Korean Medicine, Dongguk University) ;
  • Kwang Il Park (Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University)
  • 투고 : 2022.10.10
  • 심사 : 2023.02.12
  • 발행 : 2023.05.01

초록

Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.

키워드

과제정보

Bak SB and Lee EH would like to thank to the Ph.D.'s program of Dongguk University and Kyungpook National University for completing their thesis through this work, respectively.

참고문헌

  1. Mendez-Blanco C, Fondevila F, Garcia-Palomo A, Gonzalez-Gallego J, Mauriz JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med 2018;50(10):1-9. https://doi.org/10.1038/s12276-018-0159-1
  2. Delire B, Henriet P, Lemoine P, Leclercq IA, Starkel P. Chronic liver injury promotes hepatocarcinoma cell seeding and growth, associated with infiltration by macrophages. Cancer Sci 2018;109(7):2141-52. https://doi.org/10.1111/cas.13628
  3. Quintieri L, Selmy M, Indraccolo S. Metabolic effects of antiangiogenic drugs in tumors: therapeutic implications. Biochem Pharmacol 2014;89(2):162-70. https://doi.org/10.1016/j.bcp.2014.02.018
  4. Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, Liu L, Luo Y, Yao C, Qian C. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett 2016;371(2):171-81. https://doi.org/10.1016/j.canlet.2015.11.034
  5. Lee D, Kang KS, Yu JS, Woo JY, Hwang GS, Eom DW, Baek SH, Lee HL, Kim KH, Yamabe N. Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells. J Ginseng Res 2017;41(3):284-9. https://doi.org/10.1016/j.jgr.2016.05.002
  6. Chen S, Wang Z, Huang Y, O'Barr SA, Wong RA, Yeung S, Chow MS. Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review. Evid Based Complement Alternat Med 2014;2014:168940.
  7. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim SH, Kim JH. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-kappaB and ERK1/2 pathways in colon cancer. J Ginseng Res 2018;42(3):288-97. https://doi.org/10.1016/j.jgr.2017.03.008
  8. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39(4):384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  9. Mohammadi H, Hadi A, Kord-Varkaneh H, Arab A, Afshari M, Ferguson AJR, Ghaedi E. Effects of ginseng supplementation on selected markers of inflammation: a systematic review and meta-analysis. Phytother Res 2019;33(8):1991-2001. https://doi.org/10.1002/ptr.6399
  10. Oh J, Yoon HJ, Jang JH, Kim DH, Surh YJ. The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling. J Ginseng Res 2019;43(3):421-30. https://doi.org/10.1016/j.jgr.2018.05.004
  11. Park JG, Son YJ, Aravinthan A, Kim JH, Cho JY. Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells. J Ginseng Res 2016;40(4):431-6. https://doi.org/10.1016/j.jgr.2016.07.006
  12. Seo EY, Kim WK. Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J Ginseng Res 2011;35(3):315-24. https://doi.org/10.5142/jgr.2011.35.3.315
  13. Bae JK, Kim YJ, Chae HS, Kim DY, Choi HS, Chin YW, Choi YH. Korean red ginseng extract enhances paclitaxel distribution to mammary tumors and its oral bioavailability by P-glycoprotein inhibition. Xenobiotica 2017;47(5):450-9. https://doi.org/10.1080/00498254.2016.1182233
  14. Wang CZ, Anderson S, Du W, He TC, Yuan CS. Red ginseng and cancer treatment. Chin J Nat Med 2016;14(1):7-16. https://doi.org/10.1186/s13020-019-0231-3
  15. Xie Q, Wen H, Zhang Q, Zhou W, Lin X, Xie D, Liu Y. Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell. Biomed Pharmacother 2017;85:16-21. https://doi.org/10.1016/j.biopha.2016.11.096
  16. Tian L, Shen D, Li X, Shan X, Wang X, Yan Q, Liu J. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 2016;7(2):1619-32. https://doi.org/10.18632/oncotarget.6451
  17. Wang J, Tian L, Khan MN, Zhang L, Chen Q, Zhao Y, Yan Q, Fu L, Liu J. Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NFkappaB mediated epithelial-mesenchymal transition and stemness. Cancer Lett 2018;415:73-85.
  18. Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X, Ngok-Shun Wong R. Ginsenoside-Rb1-Mediated anti-angiogenesis via regulating PEDF and miR33a through the activation of PPAR-gamma pathway. Front Pharmacol 2017;8:783.
  19. Liu D, Liu T, Teng Y, Chen W, Zhao L, Li X. Ginsenoside Rb1 inhibits hypoxiainduced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Exp Ther Med 2017;14(4):2895-902. https://doi.org/10.3892/etm.2017.4889
  20. Yang J, Yuan D, Xing T, Su H, Zhang S, Wen J, Bai Q, Dang D. Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZbinding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 2016;40(4):400-8. https://doi.org/10.1016/j.jgr.2016.03.007
  21. Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cellmediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2018;42(4):455-62. https://doi.org/10.1016/j.jgr.2017.05.003
  22. D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019;43(6):582-92. https://doi.org/10.1002/cbin.11137
  23. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker 3rd EB. Autophagy: regulation and role in development. Autophagy 2013;9(7):951-72. https://doi.org/10.4161/auto.24273
  24. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, et al. Autophagy in malignant transformation and cancer progression. EMBO J 2015;34(7):856-80. https://doi.org/10.15252/embj.201490784
  25. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagyinflammation-cell death axis in organismal aging. Science 2011;333(6046): 1109-12. https://doi.org/10.1126/science.1201940
  26. Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 2011;42(1):23-35. https://doi.org/10.1016/j.molcel.2011.02.009
  27. Yang ZJ, Chee CE, Huang S, Sinicrope F. Autophagy modulation for cancer therapy. Cancer Biol Ther 2011;11(2):169-76. https://doi.org/10.4161/cbt.11.2.14663
  28. Liu YL, Yang PM, Shun CT, Wu MS, Weng JR, Chen CC. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 2010;6(8):1057-65. https://doi.org/10.4161/auto.6.8.13365
  29. Shinohara H, Taniguchi K, Kumazaki M, Yamada N, Ito Y, Otsuki Y, Uno B, Hayakawa F, Minami Y, Naoe T, et al. Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia. Cancer Lett 2015;360(1):28-38. https://doi.org/10.1016/j.canlet.2015.01.039
  30. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011;13(9):1016-23. https://doi.org/10.1038/ncb2329
  31. Habets DD, Coumans WA, Voshol PJ, den Boer MA, Febbraio M, Bonen A, Glatz JF, Luiken JJ. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 2007;355(1):204-10. https://doi.org/10.1016/j.bbrc.2007.01.141
  32. Hardie DG. AMPK and autophagy get connected. EMBO J 2011;30(4):634-5. https://doi.org/10.1038/emboj.2011.12
  33. Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015;72(24):4721-57. https://doi.org/10.1007/s00018-015-2034-8
  34. Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR, Park JH, Seo KS, Heo JY, Han J, et al. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 2011;7(11):1348-58. https://doi.org/10.4161/auto.7.11.16658
  35. Choi HD, Kim KY, Park KI, Kim SH, Park SG, Yu SN, Kim YW, Kim DS, Chung KT, Ahn SC. Dual role of reactive oxygen species in autophagy and apoptosis induced by compound PN in prostate cancer cells. Molecular & Cellular Toxicology 2021;17(1):41-50.
  36. Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H, Sun L, Hu H, Gao K, Wang W, et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res 2019;47(D1):D1110-7. https://doi.org/10.1093/nar/gky1021
  37. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 2013;41(Database issue):D1089-95. https://doi.org/10.1093/nar/gks1100
  38. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014;6:13.
  39. Huang Y, Fang J, Lu W, Wang Z, Wang Q, Hou Y, Jiang X, Reizes O, Lathia J, Nussinov R, et al. A systems pharmacology approach uncovers wogonoside as an angiogenesis inhibitor of triple-negative breast cancer by targeting hedgehog signaling. Cell Chem Biol 2019;26(8):1143-11458 e6.
  40. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E, Magarinos MP, Mosquera JF, Mutowo P, Nowotka M, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 2019;47(D1):D930-40. https://doi.org/10.1093/nar/gky1075
  41. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 2016;44(D1):D1045-53. https://doi.org/10.1093/nar/gkv1072
  42. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016;44(D1):D380-4. https://doi.org/10.1093/nar/gkv1277
  43. Ye H, Ye L, Kang H, Zhang D, Tao L, Tang K, Liu X, Zhu R, Liu Q, Chen YZ, et al. HIT: linking herbal active ingredients to targets. Nucleic Acids Res 2011;39(Database issue):D1055-9. https://doi.org/10.1093/nar/gkq1165
  44. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ. The comparative tmoxicogenomics database: update 2019. Nucleic Acids Res 2019;47(D1):D948-54. https://doi.org/10.1093/nar/gky868
  45. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45(D1):D353-61. https://doi.org/10.1093/nar/gkw1092
  46. Jiang X, Tan HY, Teng S, Chan YT, Wang D, Wang N. The role of AMP-activated protein kinase as a potential target of treatment of hepatocellular carcinoma. Cancers (Basel) 2019;11(5).
  47. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44(W1):W90-7. https://doi.org/10.1093/nar/gkw377
  48. Dong GZ, Jang EJ, Kang SH, Cho IJ, Park SD, Kim SC, Kim YW. Red ginseng abrogates oxidative stress via mitochondria protection mediated by LKB1-AMPK pathway. BMC Complement Altern Med 2013;13:64.
  49. Jang EJ, Kim SC, Lee JH, Lee JR, Kim IK, Baek SY, Kim YW. Fucoxanthin, the constituent of Laminaria japonica, triggers AMPK-mediated cytoprotection and autophagy in hepatocytes under oxidative stress. BMC Complement Altern Med 2018;18:97.
  50. Park SY, Park JH, Kim HS, Lee CY, Lee HJ, Kang KS, Kim CE. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach. J Ginseng Res 2018;42(1):98-106. https://doi.org/10.1016/j.jgr.2017.09.001
  51. Nishino H, Tokuda H, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Bu P, Takayasu J, Onozuka M, et al. Cancer chemoprevention by ginseng in mouse liver and other organs. J Korean Med Sci 2001;16(Suppl):S66-9. https://doi.org/10.3346/jkms.2001.16.S.S66
  52. Ki SH, Yang JH, Ku SK, Kim SC, Kim YW, Cho IJ. Red ginseng extract protects against carbon tetrachloride-induced liver fibrosis. J Ginseng Res 2013;37(1):45-53. https://doi.org/10.5142/jgr.2013.37.45
  53. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020;17(7):395-417. https://doi.org/10.1038/s41571-020-0341-y
  54. Li W, Li G, She W, Hu X, Wu X. Targeted antitumor activity of Ginsenoside (Rg1) in paclitaxel-resistant human nasopharyngeal cancer cells are mediated through activation of autophagic cell death, cell apoptosis, endogenous ROS production, S phase cell cycle arrest and inhibition of m-TOR/PI3K/AKT signalling pathway. J BUON 2019;24(5):2056-61.
  55. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol- and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016:5738694.
  56. Wang CZ, Li B, Wen XD, Zhang Z, Yu C, Calway TD, He TC, Du W, Yuan CS. Paraptosis and NF-kappaB activation are associated with protopanaxadiolinduced cancer chemoprevention. BMC Complement Altern Med 2013;13:2.
  57. Xu FY, Shang WQ, Yu JJ, Sun Q, Li MQ, Sun JS. The antitumor activity study of ginsenosides and metabolites in lung cancer cell. Am J Transl Res 2016;8(4):1708-18.
  58. Jin HR, Du CH, Wang CZ, Yuan CS, Du W. Ginseng metabolite Protopanaxadiol induces Sestrin2 expression and AMPK activation through GCN2 and PERK. Cell Death Dis 2019;10(4):311.
  59. Park SM, Jung EH, Kim JK, Jegal KH, Park CA, Cho IJ, Kim SC. 20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation. J Ginseng Res 2017;41(3):392-402. https://doi.org/10.1016/j.jgr.2017.01.012
  60. Kim YW, Bak SB, Baek SY, Kim IK, Lee WY, Yun UJ, Park KI. Mylabris phalerata induces the apoptosis and cell cycle delay in HCC, and potentiates the effect of sorafenib based on the molecular and network pharmacology approach. Molecular & Cellular Toxicology 2022. https://doi.org/10.1007/s13273-022-00300-7.