DOI QR코드

DOI QR Code

Ginsenoside Rg1 ameliorates Alzheimer's disease pathology via restoring mitophagy

  • Ni Wang (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University) ;
  • Junyan Yang (Department of Clinical Laboratory, Stomatological Hospital, Chongqing Medical University) ;
  • Ruijun Chen (School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong) ;
  • Yunyun Liu (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University) ;
  • Shunjie Liu (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University) ;
  • Yining Pan (School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong) ;
  • Qingfeng Lei (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University) ;
  • Yuzhou Wang (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University) ;
  • Lu He (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University) ;
  • Youqiang Song (School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong) ;
  • Zhong Li (Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University)
  • Received : 2022.05.11
  • Accepted : 2022.12.12
  • Published : 2023.05.01

Abstract

Background: Alzheimer's disease (AD) is a common form of dementia, and impaired mitophagy is a hallmark of AD. Mitophagy is mitochondrial-specific autophagy. Ginsenosides from Ginseng involve in autophagy in cancer. Ginsenoside Rg1 (Rg1 hereafter), a single compound of Ginseng, has neuroprotective effects on AD. However, few studies have reported whether Rg1 can ameliorate AD pathology by regulating mitophagy. Methods: Human SH-SY5Y cell and a 5XFAD mouse model were used to investigate the effects of Rg1. Rg1 (1µM) was added to β-amyloid oligomer (AβO)-induced or APPswe-overexpressed cell models for 24 hours. 5XFAD mouse models were intraperitoneally injected with Rg1 (10 mg/kg/d) for 30 days. Expression levels of mitophagy-related markers were analyzed by western blot and immunofluorescent staining. Cognitive function was assessed by Morris water maze. Mitophagic events were observed using transmission electron microscopy, western blot, and immunofluorescent staining from mouse hippocampus. The activation of the PINK1/Parkin pathway was examined using an immunoprecipitation assay. Results: Rg1 could restore mitophagy and ameliorate memory deficits in the AD cellular and/or mouse model through the PINK1-Parkin pathway. Moreover, Rg1 might induce microglial phagocytosis to reduce β-amyloid (Aβ) deposits in the hippocampus of AD mice. Conclusion: Our studies demonstrate the neuroprotective mechanism of ginsenoside Rg1 in AD models. Rg1 induces PINK-Parkin mediated mitophagy and ameliorates memory deficits in 5XFAD mouse models.

Keywords

Acknowledgement

We thank all members of Dr. Gao Bo's lab (The University of Hong Kong) for supporting experimental materials. We thank Dr. Ling Li, Mr. Md. Farhad Hossain, and Miss Hongting Xu for discussing and editing this paper.

References

  1. Collaborators GBDDF. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022;7(2):e105-25. https://doi.org/10.1016/S2468-2667(21)00249-8
  2. Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, et al. Protective effects of Indian spice curcumin against amyloid-beta in alzheimer's disease. J Alzheimers Dis 2018;61(3):843-66. https://doi.org/10.3233/JAD-170512
  3. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003;39(3):409-21. https://doi.org/10.1016/S0896-6273(03)00434-3
  4. Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, et al. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res 2008;5(6):525-32. https://doi.org/10.2174/156720508786898451
  5. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 2019;22(3):401-12. https://doi.org/10.1038/s41593-018-0332-9
  6. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001;81(2):741-66. https://doi.org/10.1152/physrev.2001.81.2.741
  7. Bose A, Beal MF. Mitochondrial dysfunction and oxidative stress in induced pluripotent stem cell models of Parkinson's disease. Eur J Neurosci 2019;49(4):525-32. https://doi.org/10.1111/ejn.14264
  8. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443(7113):787-95. https://doi.org/10.1038/nature05292
  9. Lane N, Martin W. The energetics of genome complexity. Nature 2010;467(7318):929-34. https://doi.org/10.1038/nature09486
  10. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 2018;20(9):1013-22. https://doi.org/10.1038/s41556-018-0176-2
  11. Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 2018;28(4):R170-85. https://doi.org/10.1016/j.cub.2018.01.004
  12. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012;14(2):177-85. https://doi.org/10.1038/ncb2422
  13. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008;454(7201):232-5. https://doi.org/10.1038/nature07006
  14. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 2015;6:7527.
  15. Tiribuzi R, Crispoltoni L, Chiurchiu V, Casella A, Montecchiani C, Del Pino AM, et al. Trans-crocetin improves amyloid-beta degradation in monocytes from Alzheimer's Disease patients. J Neurol Sci 2017;372:408-12. https://doi.org/10.1016/j.jns.2016.11.004
  16. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58(11):1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  17. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7(3):293-302. https://doi.org/10.2174/157016109788340767
  18. Ashrafizadeh M, Tavakol S, Mohammadinejad R, Ahmadi Z, Yaribeygi H, Jamialahmadi T, et al. Paving the road toward exploiting the therapeutic effects of ginsenosides: an emphasis on autophagy and endoplasmic reticulum stress. Adv Exp Med Biol 2021;1308:137-60. https://doi.org/10.1007/978-3-030-64872-5_12
  19. Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, et al. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J Ginseng Res 2016;40(1):9-17. https://doi.org/10.1016/j.jgr.2015.04.006
  20. Wang P, Wei X, Zhou Y, Wang YP, Yang K, Zhang FJ, et al. Effect of ginsenoside Rg1 on proliferation and differentiation of human dental pulp cells in vitro. Aust Dent J 2012;57(2):157-65. https://doi.org/10.1111/j.1834-7819.2012.01672.x
  21. Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O. Gene dosage dependent aggravation of the neurological phenotype in the 5XFAD mouse model of alzheimer's disease. J Alzheimers Dis 2015;45(4):1223-36. https://doi.org/10.3233/JAD-143120
  22. Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al. Ginsenoside Rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimers Dis 2010;19(3):977-89. https://doi.org/10.3233/JAD-2010-1296
  23. Korivi M, Hou CW, Huang CY, Lee SD, Hsu MF, Yu SH, et al. Ginsenoside-Rg1 protects the liver against exhaustive exercise-induced oxidative stress in rats. Evid Based Complement Alternat Med 2012;2012:932165.
  24. Fan Y, Xia J, Jia D, Zhang M, Zhang Y, Huang G, et al. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage. Pharm Biol 2016;54(9):1815-21. https://doi.org/10.3109/13880209.2015.1129543
  25. Ott M, Zhivotovsky B, Orrenius S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 2007;14(7):1243-7. https://doi.org/10.1038/sj.cdd.4402135
  26. Cheng N, Jiao S, Gumaste A, Bai L, Belluscio L. APP overexpression causes abeta-independent neuronal death through intrinsic apoptosis pathway. eNeuro 2016;3(4).
  27. Goudarzi S, Hosseini A, Abdollahi M, Haghi-Aminjan H. Insights into parkin-mediated mitophagy in alzheimer's disease: a systematic review. Front Aging Neurosci 2021;13:674071.
  28. Fu LM, Li JT. A systematic review of single Chinese herbs for Alzheimer's disease treatment. Evid Based Complement Alternat Med 2011;2011:640284.
  29. Lee SM, Shon HJ, Choi CS, Hung TM, Min BS, Bae K. Ginsenosides from heat processed ginseng. Chem Pharm Bull (Tokyo) 2009;57(1):92-4. https://doi.org/10.1248/cpb.57.92
  30. Kennedy DO, Scholey AB, Wesnes KA. Dose dependent changes in cognitive performance and mood following acute administration of Ginseng to healthy young volunteers. Nutr Neurosci 2001;4(4):295-310. https://doi.org/10.1080/1028415X.2001.11747370
  31. Nishijo H, Uwano T, Zhong YM, Ono T. Proof of the mysterious efficacy of ginseng: basic and clinical trials: effects of red ginseng on learning and memory deficits in an animal model of amnesia. J Pharmacol Sci 2004;95(2):145-52. https://doi.org/10.1254/jphs.FMJ04001X3
  32. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 2003;84(2-3):187-92. https://doi.org/10.1016/S0378-8741(02)00317-3
  33. Fang F, Chen X, Huang T, Lue LF, Luddy JS, Yan SS. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim Biophys Acta 2012;1822(2):286-92. https://doi.org/10.1016/j.bbadis.2011.10.004
  34. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13(2):132-41. https://doi.org/10.1038/ncb2152
  35. Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 2011;108(12):4788-93. https://doi.org/10.1073/pnas.1100844108
  36. Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF. Mitophagy and neuroprotection. Trends Mol Med 2020;26(1):8-20. https://doi.org/10.1016/j.molmed.2019.07.002
  37. Zhang CW, Hang L, Yao TP, Lim KL. Parkin regulation and neurodegenerative disorders. Front Aging Neurosci 2015;7:248.
  38. Gkikas I, Palikaras K, Tavernarakis N. The role of mitophagy in innate immunity. Front Immunol 2018;9:1283.