DOI QR코드

DOI QR Code

Suppression of Migration and Invasion by Alnus hirsuta in Human Hepatocellular Carcinoma Cells

  • Bo-Ram Kim (Honam National Institute of Biological Resources) ;
  • Su Hui Seong (Honam National Institute of Biological Resources) ;
  • Tae-Su Kim (Honam National Institute of Biological Resources) ;
  • Jin-Ho Kim (Honam National Institute of Biological Resources) ;
  • Chan Seo (Honam National Institute of Biological Resources) ;
  • Ha-Nul Lee (Honam National Institute of Biological Resources) ;
  • Sua Im (Honam National Institute of Biological Resources) ;
  • Jung Eun Kim (Honam National Institute of Biological Resources) ;
  • Ji Min Jung (Honam National Institute of Biological Resources) ;
  • Jung Up Park (Honam National Institute of Biological Resources) ;
  • Kyung-Min Choi (Honam National Institute of Biological Resources) ;
  • Jin-Woo Jeong (Honam National Institute of Biological Resources)
  • Received : 2023.05.04
  • Accepted : 2023.05.19
  • Published : 2023.06.01

Abstract

Hepatocellular carcinoma (HCC) has a poor prognosis and high metastasis and recurrence rates. Although extracts of Alnus hirsuta (Turcz. ex Spach) Rupr. (AH) have been demonstrated to possess potential anti-inflammatory and anti-cancer activities, the underlying mechanism of AH in HCC treatment remains to be elucidated. We investigated the effects and potential mechanisms of AH on migration and invasion of Hep3B cells. Within the non-cytotoxic concentration range, AH significantly inhibited motility and invasiveness of Hep3B cells in a concentration-dependent manner. Inhibitory effects of AH on cell invasiveness are associated with tightening of tight junctions (TJs), as demonstrated by an increase in transepithelial electrical resistance. Immunoblotting indicated that AH decreased levels of claudins, which form major components of TJs and play key roles in the control and selectivity of paracellular transport. Furthermore, AH inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in Hep3B cells. Therefore, AH inhibits migration and invasion of Hep3B cells by inhibiting the activity of MMPs and tightening TJs through suppression of claudin expression, possibly by suppressing the PI3K/AKT signaling pathway.

Keywords

Acknowledgement

This work was supported by a grant from the Honam National Institute of Biological Resources (HNIBR), funded by the Ministry of Environment (MOE) of the Korea (HNIBR202302115) and Korea Environment Industry & Technology Institute (KEITI) through project to make multi-ministerial national biological research resources more advanced, funded by Korea Ministry of Environment (MOE) (RS-2023-00230402).

References

  1. An, M.Y., H.J. Eo, H.J. Son, G.H. Park and J.B. Jeong. 2020. Inhibitory activity of Lonicera caerulea against cell proliferation in human colorectal cancer cells. Korean J. Plant Res. 33:263-270.
  2. Angelow, S. and A.S. Yu. 2007. Claudins and paracellular transport: an update. Curr. Opin. Nephrol. Hypertens 16:459-464. https://doi.org/10.1097/MNH.0b013e32820ac97d
  3. Aoki, T., S. Ohta and T. Suga. 1990. Triterpenoids, diarylheptanoids and their glycosides in the flowers of Alnus speies. Phytochemistry 29:3611-3614. https://doi.org/10.1016/0031-9422(90)85286-O
  4. Choi, S.E., K.H. Park, M.H. Kim, J.H. Song, H.Y. Jin and M.W. Lee. 2012. Diarylheptanoids from the bark of Alnus pendula Matsumura. Nat. Prod. Sci. 18:106-110.
  5. Dilly, A.K., P. Ekambaram, Y. Guo, Y. Cai, S.C. Tucker, R. Fridman, M. Kandouz and K.V. Honn. 2013. Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. Int. J. Cancer 133:1784-1791. https://doi.org/10.1002/ijc.28165
  6. Du, H., J. Gu, Q. Peng, X. Wang, L. Liu, X. Shu, Q. He and Y. Tan. 2021. Berberine suppresses EMT in liver and gastric carcinoma cells through combination with TGF-β regulating TGF- β/smad Pathway. Oxid. Med. Cell. Longev. 2021:2337818.
  7. Egeblad, M. and Z. Werb. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2:161-174. https://doi.org/10.1038/nrc745
  8. Furuse, M., K. Furuse, H. Sasaki and S. Tsukita. 2001. Convertsion of Zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol. 153:263-272. https://doi.org/10.1083/jcb.153.2.263
  9. Gibbs, D.F., R.L. Warner, S.J. Weiss, K.J. Johnson and J. Varani. 1999. Characterization of matrix metalloproteinases produced by rat alveolar macrophages. Am J. Respir. Cell Mol. Biol. 20:1136-1144. https://doi.org/10.1165/ajrcmb.20.6.3483
  10. Grant-Tschudy, K.S. and C.R. Wira. 2005. Effect of oestradiol on mouse uterine epithelial cell tumour necrosis factor-alpha release is mediated through uterine stromal cells. Immunology 115:99-107. https://doi.org/10.1111/j.1365-2567.2005.02134.x
  11. Guo, J.X., T. Kimura, P.P.H. But and C.K. Sung. 2001a. International Collation of Traditional and Folk Medicine. Vol. 4. World Scientific Publishing, Singapore.
  12. Guo, J.X., T. Kimura, P.P.H. But and K.S. Chung. 2001b. International Collation of Traditional and Folk Medicine: Northeast Asia. Vol.4. World Scientific Publishing, Singapore.
  13. Hanahan, D. and R.A. Weinberg. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  14. Hsu, R.Y., C.H. Chan, J.D. Spicer, M.C. Rousseau, B. Giannias, S. Rousseau and L.E. Ferri. 2011. LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis. Cancer Res. 71:1989-1998. https://doi.org/10.1158/0008-5472.CAN-10-2833
  15. Jeong, D.W., J.S. Kim, S.M. Cho, Y.A. Lee, K.H. Kim, S.W. Kim and M.W. Lee. 2000. Diarylheptanoids from the stem barks of Alnus hirsuta var sibirica. Korean J. Pharmacogn. 31:28-33.
  16. John, A. and G. Tuszynski. 2001. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7:14-23. https://doi.org/10.1007/BF03032599
  17. Joo, S.S., S.G. Kim, S.E. Choi, Y.B. Kim, H.Y. Park, S.T. Seo, Y.W. Choi, M.W. Lee and D.I. Lee. 2009. Suppression of T cell activation by hirsutenone, isolated from the bark of Alnus japonica, and its therapeutic advantages for atopic dermatitis. Eur. J. Pharmacol. 614:98-105. https://doi.org/10.1016/j.ejphar.2009.04.047
  18. Kessenbrock, K., V. Plaks and Z. Werb. 2010. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52-67. https://doi.org/10.1016/j.cell.2010.03.015
  19. Khasigov, P.Z., O.V. Podobed, T.S. Gracheva, K.D. Salbiev, S.V. Grachev and T.T. Berezov. 2003. Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Biochemistry Mosc. 68:711-717. https://doi.org/10.1023/A:1025051214001
  20. Krause, G., L. Winkler, S.L. Mueller, R.F. Haseloff, J. Piontek and I.E. Blasig. 2008. Structure and function of claudins. Biochim. Biophys. Acta. 1778:631-645. https://doi.org/10.1016/j.bbamem.2007.10.018
  21. Lambert, E., E. Dasse, B. Haye and E. Petitfrere. 2004. TIMPs as multifacial proteins. Crit. Rev. Oncol. Hematol. 49:187-198. https://doi.org/10.1016/j.critrevonc.2003.09.008
  22. Lee, M.N., J.Y. Song, Y.W. Chin and S.H. Sung. 2013. Anti-adipogenic diarylheptanoids from Alnus hirsuta var sibirica on 3T3-L1 cells. Bioorg. Med. Chem. Lett. 23:2069-2073. https://doi.org/10.1016/j.bmcl.2013.01.127
  23. Lee, M.W., D.W. Jeong, Y.A. Lee, M.S. Park and S.H. Toh. 1999. Flavonoids from the leaves of Alnus hirsuta. YakhakHoegi 43:547-552. Lee, M.W., T. Tanaka, G.I. Nonaka and I. Nishioka. 1992.
  24. Hirsunin, an ellagitannin with a diarylheptanoid moiety, from Alnus hirsuta var microphylla. Phytochemistry 31:967-970.
  25. Lee, O., M.H. Choi, S.H. Ha, G.W. Lee, J.Y. Kim, G.M. Park, M.W. Lee, Y.W. Choi, M.G. Kim and C.H. Oh. 2010. Effect of pedunculagin investigated by non-invasive evaluation on atopic-like dermatitis in NC/Nga mice. Skin Res. Technol. 16:371-377. https://doi.org/10.1111/j.1600-0846.2010.00443.x
  26. Lee, S.J. 1996. Korea Folk Medicine. Seoul National University Publishing Center, Seoul, Korea. p. 40.
  27. Li, C., F. Li, K. Zhao, J. Yao, Y. Cheng, L. Zhao, Z. Li, N. Lu and Q. Guo. 2014. LFG-500 inhibits the invasion of cancer cells via down-regulation of PI3K/AKT/NF-κB signaling pathway. PLoS ONE 9:e91332.
  28. Liu, G., S. Xu, F. Jiao, T. Ren and Q. Li. 2015. Vascular endothelial growth factor B coordinates metastasis of non-small cell lung cancer. Tumour Biol. 36:2185-2191. https://doi.org/10.1007/s13277-014-2829-5
  29. Mattiolo, P., A. Scarpa and C. Luchini. 2023. Hepatoid tumors of the gastrointestinal/pancreatobiliary district: morphology, immunohistochemistry, and molecular profiles. Hum. Pathol. 132:169-175. https://doi.org/10.1016/j.humpath.2022.06.011
  30. Mook, O.R., W.M. Frederiks and C.J. Van Noorden. 2004. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta. 1705:69-89. https://doi.org/10.1016/j.bbcan.2004.09.006
  31. Morin, P.J. 2005. Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res. 65:9603-9606. https://doi.org/10.1158/0008-5472.CAN-05-2782
  32. O'Leary, D.P., L. Bhatt, J.F. Woolley, D.R. Gough, J.H. Wang, T.G. Cotter and H.P. Redmond. 2012. TLR-4 signaling accelerates colon cancer cell adhesion via NF-κB mediated transcriptional up-regulation of Nox-1. PLoS ONE 7:e44176.
  33. Oh, H.K., Y.H. Kim and M.S. Beon. 2006. Study on vascular plants of the gosan recreational forest in Jeonbuk. Korean J. Plant Res. 19:617-627.
  34. Oh, H.K., Y.T. Shin and M.S. Beon. 2008. Investigation of vascular plants in the eco-arboretum site, Mt. Gumwon. Korean J. Plant Res. 21:117-127.
  35. Park, S.Y., Y.H. Kim, Y. Kim and S.J. Lee. 2012. Aromatic-turmerone attenuates invasion and expression of MMP-9 and COX-2 through inhibition of NF-κB activation in TPA-induced breast cancer cells. J. Cell. Biochem. 113:3653-3662. https://doi.org/10.1002/jcb.24238
  36. Rubenwolf, P. and J. Southgate. 2011. Permeability of differentiated human urothelium in vitro. Methods Mol. Biol. 763:207-222. https://doi.org/10.1007/978-1-61779-191-8_14
  37. Schneeberger, E.E. and R.D. Lynch. 2004. The tight junction: a multifunctional complex. Am. J. Physiol. Cell Physiol. 286:C1213-C1228. https://doi.org/10.1152/ajpcell.00558.2003
  38. Singh, A.B., A. Sharma and P. Dhawan. 2010. Claudin family of proteins and cancer an overview. J. Oncol. 2010:541957.
  39. Soler, A.P., R.D. Miller, K.V. Laughlin, N.Z. Carp, D.M. Klurfeld and J.M. Mullin. 1999. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20:1425-1431. https://doi.org/10.1093/carcin/20.8.1425
  40. Song, H.Y., S.M. Ju, A.R. Goh, D.J. Kwon, S.Y. Choi and J. Park. 2011. Suppression of TNF-alpha-induced MMP-9 expression by a cell permeable superoxide dismutase in keratinocytes. BMB. Rep. 44:462-467. https://doi.org/10.5483/BMBRep.2011.44.7.462
  41. Suga, T., T. Iwata and Y. Asakawa. 1972. Chemical constituents of the male flower of Alnus pendula (Betulaceae). Bull. Chem. Soc. Jpn. 45:2058-2060. https://doi.org/10.1246/bcsj.45.2058
  42. Terazawa, M., M. Miyake and H. Okuyama. 1984. Phenolic compounds in living tissue of woods. V. Teddish orange staining in keyamahannoki (Alnus hirsuta) and hannoki (A. japonica) [Betulaceae] caused by the interaction of hirsuto-side and catechol oxidase after cutting the woods. Mokuzai Gakkaishi. 30:601-607.
  43. Tsukita, S. and M. Furuse. 2000. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 149:13-16. https://doi.org/10.1083/jcb.149.1.13
  44. Turksen, K. and T.C. Troy. 2011. Junctions gone bad: claudins and loss of the barrier in cancer. Biochim. Biophys. Acta. 1816:73-79. https://doi.org/10.1016/j.bbcan.2011.04.001
  45. Utech, M., M. Bruwer and A. Nusrat. 2006. Tight junctions and cell-cell interactions. Methods Mol. Biol. 341:185-195. https://doi.org/10.1385/1-59745-113-4:185
  46. Uzui, H., A. Harpf, M. Liu, T.M. Doherty, A. Shukla and N. Chai. 2002. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation 106:3024-3030. https://doi.org/10.1161/01.CIR.0000041433.94868.12
  47. Vihinen, P., R. Ala-aho and V.M. Kahari. 2005. Matrix metalloproteinases as therapeutic targets in cancer. Curr. Cancer Drug Targets. 5:203-220. https://doi.org/10.2174/1568009053765799
  48. Vu, T.H. and Z. Werb. 2000. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 14:2123-2133. https://doi.org/10.1101/gad.815400
  49. Zhu, W., A. Fu, J. Hu, T. Wang, Y. Luo, M. Peng, Y. Ma, Y. Wei and L. Chen. 2011. 5-Formylhonokiol exerts anti-angiogenesis activity via inactivating the ERK signaling pathway. Exp. Mol. Med. 43:146-152. https://doi.org/10.3858/emm.2011.43.3.017