DOI QR코드

DOI QR Code

Effect of neem leaves and stock density of earthworm (Eisenia fetida) on quality of rice straw vermicompost

  • Sapna Yadav (Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University) ;
  • Parveen Kumar (Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University)
  • 투고 : 2022.07.21
  • 심사 : 2023.03.22
  • 발행 : 2023.03.25

초록

The sustainable management of rice straw is essential for protection of human health and environment. This study assesses the impact of stock density of earthworm (Eisenia fetida) and Neem leaves (Azadirachta indica) on the quality of the final vermicompost. The vermicompost is produced using different combinations of rice straw, Neem leaves, and cow dung (bulking agent) by varying stock density of earthworms. The vermicomposting experiments are performed in plastic containers (32 cm × 28 cm × 28 cm) in open for 90 days under laboratory conditions. The stock density of the earthworm is found to be an important factor to influence nutritional quality of the final vermicompost. There is observed significant improvement in the total nitrogen (91.8%), phosphate (73.4%), potassium (38.8%), and calcium (59.05%) content of the vermicompost produced with the highest stock density of the earthworms. All the treatments showed decrease in TOC and C:N content after 90 days of vermicomposting. The treatment with Neem leaves showed maximum growth of earthworms (2.65 fold). Neem leaves brought positive changes in the quality of final vermicompost by enhancing the growth and reproduction of the earthworms. The calcium content increased by 39% in the final vermicompost with the addition of Neem leaves at the same stock density of the earthworms. The stock density of the earthworms and Neem leaves are found to significantly improve quality of the final vermicompost as compared with the compost (control). The surface morphology in SEM images showed high degree of fragmentation in the vermicompost as compared with the compost. The combined action of microbes and earthworms resulted in high degree of disintegration in the vermicompost.

키워드

과제정보

All the support received from G D Goenka University for completion of this work is highly acknowledged.

참고문헌

  1. A Food grain output to touch new record of 308.65 million tons in 2020-21, says government (2021), "The economics times, India", https://economictimes.indiatimes.com/news/economy/agriculture/food-grain-outputto-touch-new-record-of308-65-million-tons-in-2020-21-saysgovernment/articleshow/85243856.cms?utm_source=contentofinterestandutm_medium=textandutm_campaign=cppst.
  2. Agarwal, A. (1996), What's in a neem? Down to Earth, 14(20), 27-38.
  3. Albanell, E., Plaixats, J. and Cabrero, T. (1988), "Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes", Biol. Fert. Soils, 6, 266-269. https://doi.org/10.1007/BF00260823.
  4. Alidadi, H., Najafpoor, A.A., Hosseinzadeh, A., Dolatabadi Takabi, M., Esmaili, H., Zanganeh, J. and Piranloo, F.G. (2016), "Waste recycling by vermicomposting: maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators", J. Environ. Management, 182, 134-140. https://doi.org/10.1016/j.jenvman.2016.07.025.
  5. Ameen, F. and Homaidan, A.A. (2022), "Improving the efficiency of vermicomposting of polluted organic food wastes by adding biochar and mangrove fungi", Chemosphere, 286(3), 131945. https://doi.org/10.1016/j.chemosphere.2021.131945.
  6. Arumugam, K., Renganathan, S., Olubukola Oluranti, B. and Muthunarayanan, V. (2017), "Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting", Waste Management, 74, 185-193. https://doi.org/10.1016/j.wasman.2017.11.009.
  7. Awasthi, P., Shrivastava, S., Kharkwal, A.C. and Varma, A. (2015), "Biofuel from agricultural waste: A review", Int. J. Current Microbiolgy Appl. Sci., 4(1), 470-477.
  8. Batjes, N.H. (1996), "Total carbon and nitrogen in the soils of the world", Eur. J. Soil Sci., 47, 151-163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x.
  9. Bhuvaneshwari, S., Hettiarachchi, H. and Meegoda, J.N. (2019), "Crop residue burning in India: policy challenges and potential solutions", Int. J. Environ. Res. Public Health, 16(5), 832. https://doi.org/10.3390/ijerph16050832.
  10. Biofertilizers and Organic Fertilizers in Fertilizer (Control) Order (1985), "National centre of organic farming department of agriculture and cooperation, ministry of agriculture, Govt of India, CGO-II, Kamla Nehru Nagar Ghaziabad, 201 001, Uttar Pradesh, India", Retrieved from: https://cutscart.org/pdf/Useful_InformationBiofertilizers_and_Organic_Fertilizers_in_Fertilizer_(Control)_Order_1985.pdf.
  11. Boruah, T., Barman, A., Kalita, P., Lahkar, J. and Deka, H. (2019), "Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida", Bioresource Technol., 294, 122147. https://doi.org/10.1016/j.biortech.2019.122147.
  12. Dominguez, J. (2018), "Earthworms and vermicomposting", Earthworms - The Ecological Engineers of Soil, 5, 63-75. https://doi.org/10.5772/intechopen.76088.
  13. EPA (1996), Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. EPA, Washington, DC, 1-28.
  14. Gajalakshmi, S. (2002), "Development of methods for the treatment and reuse of municipal and agricultural solid wastes appropriate for rural/urban households", Ph.D. Dissertation, Pondicherry University, Pondicherry.
  15. Garg, V.K. and Kaushik, P. (2005), "Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida", Bioresource Technol., 96, 1063-1071. https://doi.org/10.1016/j.biortech.2004.09.003.
  16. Gupta, R. and Garg, V. K. (2009), "Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida", J. Hazard. Mater., 162, 430-439. https://doi.org/10.1016/j.jhazmat.2008.05.055.
  17. Gusain, R. and Suthar, S. (2020), "Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: changes in nutrient contents, microbial enzyme activities and earthworm biodynamics", Bioresource Technol., 311, 123585. https://doi.org/10.1016/j.biortech.2020.123585.
  18. Huang, K., Zhang, Y., Xu, J., Guan, M. and Xia, H. (2022), "Feasibility of vermicomposting combined with room drying for enhancing the stabilization efficiency of dewatered sludge", Waste Management, 143, 116-124. https://doi.org/10.1016/j.wasman.2022.02.026.
  19. Hung, N.V., Maguyon-Detras, M.C., Migo, M.V., Quilloy, R., Balingbing, C., Chivenge, P. and Gummert, M. (2019), "Rice straw overview: availability, properties, and management practices", Sustain. Rice Straw Management, 1-13. https://doi.org/10.1007/978-3-030-32373-8_1.
  20. Hussain, N., Singh, A., Saha, S., Kumar, M.V.S., Bhattacharyya, P. and Bhattacharya, S.S. (2016), "Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: a vermicompost based assessment with vegetable market waste and rice straw feed mixtures", Bioresource Technol., 222, 165-174. https://doi.org/10.1016/j.biortech.2016.09.115.
  21. Jain, N., Bhatia, A. and Pathak, H. (2014), "Emission of air pollutants from crop residue burning in India", Aerosol Air Quality Res., 14, 422-430. https://doi.org/10.4209/aaqr.2013.01.0031.
  22. Kaur, T. (2019), Organic Agriculture. IntechOpen Limited, London, United Kingdom. https://doi.org/10.5772/intechopen.91892.
  23. Kaviraj and Sharma, S. (2003), "Municipal solid waste management through vermicomposting employing exotic and local species of earthworms", Bioresource Technol., 90(2), 169-173. https://doi.org/10.1016/s0960-8524(03)00123-8.
  24. Khater, E.G. (2015), "Some physical and chemical properties of compost", Int. Journal of Waste Resources, 5(1), 172. https://doi.org/10.4172/2252-5211.1000172.
  25. Lv, B., Zhang, D., Cui, Y. and Yin, F. (2018), "Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge", Bioresource Technol., 268, 408-414. https://doi.org/10.1016/j.biortech.2018.08.004.
  26. Mendoza, T.C. and Mendoza, B.C. (2016), "A review of sustainability challenges of biomass for energy, focus in the Philippines", Agricult. Technol., 12, 281-310.
  27. Nikaeen, M., Nafez, A.H., Bina, B., Nabavi, B.F. and Hassanzadeh, A. (2015), "Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting", Waste Management, 39, 104-110. https://doi.org/10.1016/j.wasman.2015.01.028.
  28. Nogales, R., Cifuentes, C. and Benitez, E. (2005), "Vermicomposting of winery wastes: a laboratory study", J. Environ. Sci. Health Part B, 40, 659-673. https://doi.org/10.1081/PFC-200061595.
  29. Petruzzello, M. (2019), Neem. EncyclopediaBritannica. https://www.britannica.com/plant/neem-tree.
  30. Pramanik, P., Safique, S., Jahan, A. and Bahagat, R.M. (2016), "Effect of vermicomposting on treated hard stem leftover wastes from pruning of tea plantation: a novel approach", Ecol. Eng., 97, 410-415. https://doi.org/10.1016/j.ecoleng.2016.10.041.
  31. Sharma, K. and Garg, V.K. (2017), "Vermi-modification of ruminant excreta using Eisenia fetida", Environ. Sci. Pollut. R., 24(24), 1-8. https://doi.org/10.1007/s11356-017-9673-2.
  32. Sharma, K. and Garg, V.K. (2018), "Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.)", Bioresource Technol., 250, 708-715. https://doi.org/10.1016/j.biortech.2017.11.101.
  33. Singh, J., Kaur, A., Vig, A. and Rup, P. (2010), "Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry", Ecotoxicology Environ. Saf., 73, 430-435. https://doi.org/10.1016/j.ecoenv.2009.08.019.
  34. Singh, R.B., Sana, R.C., Singh, M., Chandra, D., Shukla, S.G., Walli, T.K., Pradhan, P.K. and Kessels, H.P. (1995), Handbook for Straw Feeding Systems, 326-337.
  35. Sudkolai, S.T. and Nourbakhsh, F. (2017), "Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts", Waste Management, 64, 63-66. https://doi.org/10.1016/j.wasman.2017.03.011.
  36. Suthar, S. (2007), "Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes", Bioresource Technol., 98(8), 1608-1614. https://doi.org/10.1016/j.biortech.2006.06.001.
  37. Suthar, S. (2008), "Bioconversion of post harvested crop residues and cattle shed manure into value added products using earthworm Eudrilus eugeniae", Ecol. Eng., 32, 206-214. 10.1016/j.ecoleng.2007.11.002.
  38. Suthar, S., Kumar, K. and Mutiyar, P.K. (2014), "Nutrient recovery from compostable fractions of municipal solid wastes using vermitechnology", J. Mater. Cycles Waste Management, 17(1), 174-184. https://doi.org/10.1007/s10163-014-0238-x.
  39. Swarnam, T.P., Velmurugan, A., Pandey, S.K. and Roy, S.D. (2016), "Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology", Bioresource Technol., 207, 76-84. https://doi.org/10.1016/j.biortech.2016.01.046.
  40. Tripathi, G. and Bhardwaj, P. (2004), "Decomposition of kitchen waste amended with cow manure using an epigeic species (Eisenia fetida) and an anecic species (Lampito Mauritii)", Bioresource technology, 92, 215-218. https://doi.org/10.1016/j.biortech.2003.08.013.
  41. Vinotha, S.P, Parthasarthi, K. and Rangnathan, L.S. (2000), "Enhanced phosphatase activity in earthworm casts is more of microbial origin", Current Sci., 79(9), 1158-1159.
  42. Yadav, A. and Garg, V. (2010), "Bioconversion of food industry sludge into value-added product (vermicompost) using epigeic earthworm Eisenia fetida", World Review of Science, Technology and Sustainable Development, 7, 225-238. https://doi.org/10.1504/WRSTSD.2010.032526.
  43. Yadav, A. and Garg, V.K. (2009), "Feasibility of nutrient recovery from industrial sludge by vermicomposting technology", J. Hazard. Mater., 168, 262-268. https://doi.org/10.1016/j.jhazmat.2009.02.035.
  44. Yadav, A. and Garg, V.K. (2011), "Vermicomposting - an effective tool for the management of invasive weed Parthenium hysterophorus", Bioresource Technol., 102, 5891-5895. https://doi.org/10.1016/j.biortech.2011.02.062.