DOI QR코드

DOI QR Code

Regeneration and modeling of fixed-bed adsorption of fluoride on bone char

  • Hugo D. Garcia (TecNM/Instituto Tecnologico de Aguascalientes) ;
  • Rigoberto Tovar (TecNM/Instituto Tecnologico de Aguascalientes) ;
  • Carlos J. Duran (Universidad de Extremadura) ;
  • Virginia Hernandez (TecNM/Instituto Tecnologico de Aguascalientes) ;
  • Ma. R. Moreno (TecNM/Instituto Tecnologico de Aguascalientes) ;
  • Ma. A. Perez (Facultad de Ciencias Quimicas. Universidad Autonoma de Puebla)
  • 투고 : 2021.11.28
  • 심사 : 2023.02.23
  • 발행 : 2023.03.25

초록

This article presents studies of the adsorption process in a continuous system of fluoride solutions at a concentration of 30 mg/L using a bone char packed in fixed-bed columns, as well as regeneration studies in the same system using HNO3, HCl and NaOH at 0.01, 0.1 and 1 M. The Thomas Model, Artificial Neural Networks (ANNs), Numerical Integration and Mass Transfer Zone were used for the modeling of asyemmetrical breakthrough curves obtained from the fluoride adsorption on bone char. The maximum adsorption capacity of the breakthrough curves was estimated, and various design parameters of the columns were obtained for the different operating conditions. Results showed that an improvement in the modeling capabilities of the Thomas model can be obtained using ANNs. Moreover, ANNs are useful for determining reasonable and accurate design parameters of packed-bed adsorption columns. This modeling approach can be useful for the process system engineering of dynamic adsorption systems involved in the field of water treatment and purification. It is important to highlight that the obtained results indicate that, when using HCl or HNO3 at a concentration of 0.1 M, a large number of adsorption-desorption cycles are obtained and, therefore, the highest values of adsorption capacity, which leads to a reduction in operation costs.

키워드

과제정보

The authors acknowledge the financial support provided by CONACYT, TecNM/Instituto Tecnologico de Aguascalientes (Mexico) and Universidad de Extremadura and Junta de Extremadura/FEDER ref. GRU15123 (Spain).

참고문헌

  1. Aguayo, V.I.A., Bonilla, P.A., Hernandez, M.V., Montes, M.M.A. and Reynel, A.H.E. (2011), "Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as sorbents", Chem. Eng. J., 167, 67-76. https://doi.org/10.1016/j.cej.2010.11.107.
  2. Aksu, Z. and Gonen, F. (2006), "Binary biosorption of phenol and chromium (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves", Sep. Purif. Technol., 29, 205-216. https://doi.org/10.1016/j.seppur.2005.09.014.
  3. Apiratikul, R. and Pavasant, P. (2008), "Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera", Bioresour. Technol., 99, 2766-2777. https://doi.org/10.1016/j.biortech.2007.06.036.
  4. Ayawei, N., Ebelegi, A.N. and Wankasi, D. (2017), "Modelling and interpretation of adsorption isotherms", J. Chem., 2017, 1-11. https://doi.org/10.1155/2017/3039817.
  5. Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: fundamentals, computing, design and application", J. Microbiol. Meth., 43, 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3.
  6. Bennett, M.C. and Abram, J.C. (1967), "Adsorption from solution on the carbon and hydroxyapatite components of bone char", J. Colloid Interface Sci., 23, 513-521. https://doi.org/10.1016/0021-9797(67)90198-1.
  7. Bhatnagar, A., Hogland, W., Marques, M. and Sillanpaa, M. (2013), "An overview of the modification methods of activated carbon for its water treatment applications", Chem. Eng. J., 219, 499-511. https://doi.org/10.1016/j.cej.2012.12.038.
  8. Bravo, S.U.I., Rico, M.R. and Iglesias, S.G.A. (2002), "Improvement of the empiricism in the back equation of state via hybrid neural networks", Ind. Eng. Chem. Res., 41, 3705-3713. https://doi.org/10.1021/ie010773b.
  9. Buamah, R., Oduro, C.A. and Sadik, M.H. (2016), "Fluoride removal from drinking water using regenerated aluminum oxide coated media", J. Environ. Chem. Eng., 4, 250-258. https://doi.org/10.1016/j.jece.2015.10.036.
  10. Cavas, L., Karabay, Z., Alyuruk, H., Dogan, H. and Demir, G.K. (2011), "Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves", Chem. Eng. J., 171, 557-562. https://doi.org/10.1016/j.cej.2011.04.030.
  11. Choy, K.K.H. and McKay, G. (2005), "Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model", Chemosphere, 60, 1141-1150. https://doi.org/10.1016/j.chemosphere.2004.12.041.
  12. Choy, K.K.H., Ko, C.K., Cheung, C.W., Porter, J.F. and McKay, G. (2004), "Film and intraparticle mass transfer during the adsorption of metal ions onto bone char", J. Colloid. Interf. Sci., 271, 284-295. https://doi.org/10.1016/j.jcis.2003.12.015.
  13. Das, N., Pattanaik, P. and Das, R. (2005), "Defluoridation of drinking water using activated titanium rich bauxite", J. Colloid Interf. Sci., 292, 1-10. https://doi.org/10.1016/j.jcis.2005.06.045.
  14. Dena, A.J.A. (2007), Master's Thesis, Instituto Tecnologico de Aguascalientes, Mexico.
  15. Diaz, B.F., Navarro, Q.A., Grijalva, M., Grimaldo, M., Loyola, R.J. and Ortiz, D. (1997), "Endemic Fluorosis in Mexico, Fluoride, 30, 233-239.
  16. Dimovic, S., Smiciklas, I., Pleacas, I., Antonovic, D. and Mitric, M. (2009), "Comparative study of differently treated animal bones for Co2+ removal", J. Hazard. Mater., 164, 279-287. https://doi.org/10.1016/j.jhazmat.2008.08.013.
  17. Dubey, S., Agarwal, M. and Gupta, A.B. (2021), "Fluoride removal using Alum & PACl in batch & continuous mode with subsequent microfiltration", Membr. Water Treat., 12, 83-93. https://doi.org/10.12989/mwt.2021.12.2.083.
  18. Faur, C., Cogunaud, A., Dreyfus, G., Cloirec, P.L. (2008), "Modelling the breakthrough of activated carbon filters by pesticides in surface waters with static and recurrent neural networks", Chem. Eng. J., 145, 7-15. https://doi.org/10.1016/j.cej.2008.02.015.
  19. Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., Magara, Y. (2006), "Fluoride in drinking water, World Health Organization (WHO), IWA Publishing, London, UK., 2-134.
  20. Gong, J.L., Zhang, Y.L., Jiang, Y., Zeng, G.M., Cuia, Z.H., Liu, K., Deng, C.H., Niu, Q.Y., Deng, J.H. and Huan, Sh.Y. (2014), "Continuous adsorption of Pb (II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column", Appl. Surf. Sci., 330, 148-157. https://doi.org/10.1016/j.apsusc.2014.11.068.
  21. Gupta, V.K., Ali, I. and Saini, V.K. (2007), "Defluoridation of wastewaters using waste carbon slurry", Water Res., 41, 3307-3316. https://doi.org/10.1016/j.watres.2007.04.029.
  22. Ghorai, S. and Pant, K.K. (2005), "Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina", Sep. Purif. Technol., 42, 265-271. https://doi.org/10.1016/j.seppur.2004.09.001.
  23. Han, R., Wang, Y., Zou, W., Wang, Y. and Shi, Y. (2007), "Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column", J. Hazard. Mater. 145, 331-335. https://doi.org/10.1016/j.jhazmat.2006.12.027.
  24. Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, F., Tang, M. (2009), "Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves", Desalination. 245, 284-297. https://doi.org/10.1016/j.desal.2008.07.013.
  25. Hernandez-Eudave, M.T., Bonilla-Petriciolet, A., Moreno-Virgen, M.R., Rojas-Mayorga, C.K. and TovarGomez, R. (2016), "Design analysis of fixed-bed synergic adsorption of heavy metals and acid blue 25 on activated carbon", Desalination Water Treat., 57, 9824-9836. http://dx.doi.org/10.1080/19443994.2015.1031710.
  26. Hernandez, M.V., Bueno, L.J.I., Sanchez, R.A.M., Garcia, S.J., Trejo, V.R, Bonilla, P.A. and Marquez, A.C. (2003), "Fluorosis and dental caries in children 9-11 years of age from the state of Aguascalientes, Mexico", Rev. Int. Contam. Ambient., 19, 197-204.
  27. Hernandez, M.V., Elizalde, G.M.P. and Trejo, V.R. (2007), "Screening of commercial sorbents for removal of fluoride in synthetic and groundwater", Environ. Technol., 28, 595-607. https://doi.org/10.1080/09593332808618823.
  28. Hernandez, M.V., Ramirez, M.L.A., Bonilla, P.A. and Montes, M.M.A. (2012), "Optimizing the removal of fluoride form water using new carbons obtained by modification of nut shell with a calcium solution from egg shell", Biochem. Eng. J., 62, 1-7. https://doi.org/10.1016/j.bej.2011.12.011.
  29. Hosseine, S.S. and Denayer, J.F.M. (2022), "Biogas upgrading by adsorption processes: Mathematical modeling, simulation and optimization approach - A review", J. Environ. Chem. Eng., 10, 1-25. https://doi.org/10.1016/j.jece.2022.107483.
  30. Kalavathy, H., Karthik, B. and Miranda, L.R. (2010), "Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: Batch and column studies", Colloids Surf. B: Biointerfaces, 78, 291-302. https://doi.org/10.1016/j.colsurfb.2010.03.014.
  31. Kyzas, G.A., Siafaka, P.I., Pavlidou, E.G., Chrissafis, K.J. and Bikiaris, D.N. (2015), "Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures", Chem. Eng. J., 259, 438-448. https://doi.org/10.1016/j.cej.2014.08.019.
  32. Leyva-Ramos, R., Rivera-Utrilla, J., Medellin-Castillo, N.A. and Sanchez-Polo, M., (2010), "Kinetic modeling of fluoride adsorption from aqueous solution onto bone char", Chem. Eng. J., 158, 458-467. https://doi.org/10.1016/j.cej.2010.01.019.
  33. Louadj, A., Bouras, O., Rebahie, I., Cheknane, O. and Zermane, F. (2021), "Study on dynamic adsorption and chemical regeneration of Cd(II) from textile effluents by new granular composite based on gluten", Membr. Water Treat., 10, 117-131. https://doi.org/10.12989/aer.2021.10.2.117.
  34. Millar, G., Couperthwaite, S., Dawes, L., Thompson, S. and Spencer, J. (2017), "Activated alumina for the removal of fluoride ions from high alkalinity groundwater: New insights from equilibrium and column studies with multicomponente solutions", Sep. Pur. Technol., 187, 14-24. https://doi.org/10.1016/j.seppur.2017.06.042.
  35. Nasr, A.B., Walha, K., Charcosset, C. and Amar, R.B. (2011), "Removal of fluoride ions using cuttlefish bones", J. Fluorine Chem., 132, 57-62. https://doi.org/10.1016/j.jfluchem.2010.11.006.
  36. O'Connell, D.W., Birkinshaw, C. and O'Dwyer, T.F. (2008), "Heavy metal adsorbents prepared from the modification of cellolose, A review", Bio Technol., 99, 6703-6724. https://doi.org/10.1016/j.biortech.2008.01.036.
  37. Oguz, E. and Ersoy, M. (2010), "Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and neural network modelling", Chem. Eng. J., 164, 56-62. https://doi.org/10.1016/j.cej.2010.08.016.
  38. Ozturk, N., Yazar, M., Gundogdu, A., Duran, C., Senturk, H.B. and Soylak, M. (2021), "Application of cherry laurel seeds activated carbon as a new adsorbent for Cr(VI) removal", Membr. Water Treat., 12, 11-21. https://doi.org/10.12989/mwt.2021.12.1.011.
  39. Omidvar, B.M., Pirsaheb, M., Vosoughi, N.M., Khosravi, M.R., Kakavandi, B., Reza, Z.M. and Asadi, A. (2016), "Batch and column studies for the adsorption of chromium (VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent", J. Taiwan Inst. Chem. Eng., 68, 80-89. https://doi.org/10.1016/j.jtice.2016.09.022.
  40. Pan, X., Wang, J. and Zhang, D. (2009), "Sorption of cobalt to bone char: kinetics, competitive sorption and mechanism", Desalination, 249, 609-614. https://doi.org/10.1016/j.desal.2009.01.027.
  41. Patel, H., Vashi, R.T. (2015), "Characterization and Treatment of Textile Wastewater", Elsevier Inc. 127-145. https://doi.org/10.1016/B978-0-12-802326-6.00006-X.
  42. Rao, S.M., Reddy, B.V.V., Lakshmikanth, S. and Ambika, N.S. (2009), "Re-use of fluoride contaminated bone char sludge in concrete", J. Hazard. Mater., 166, 751-756. https://doi.org/10.1016/j.jhazmat.2008.11.115.
  43. Rojas-Mayorga, C.K., Bonilla-Petriciolet, A., Aguayo-Villarreal, I.A., Hernandez-Montoya, V., Moreno-Virgen, M.R., Tovar-Gomez, R. and Montes-Moran, M.A. (2013), "Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water", J. Anal. Appl. Pyrol., 104, 10-18. http://dx.doi.org/10.1016/j.jaap.2013.09.018.
  44. Singh, S., Ashfaq, M., Kumar, S.R., Joshi, H.C., Srivastava, A., Sharma, A. and Verma, N. (2013), "Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications", New Biotechnol., 30, 656-665. https://doi.org/10.1016/j.nbt.2013.05.002.
  45. Standard Methods for Examination of Water and Wastewater, American Public Health Association, 20th Ed., (1998).
  46. Susheela, A.K., Taposh, K. and Das, K. (1992), "Fluoride ingestion and its correlation with gastrointestinal discomfort", Fluoride, 25, 5-22.
  47. Texier, A.C., Andres, Y., Faur-Brasquet, C. and Cloirec, P.L., (2002), "Fixed-bed study for lanthanide (La, Eu, Yb) ions removal from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization", Chemosphere, 47, 333-342. https://doi.org/10.1016/S0045-6535(01)00244-2.
  48. Thomas, H.C. (1944), "Heterogeneous ion exchange in a flowing system", J. Am. Chem. Soc., 66, 1664-1666. https://doi.org/10.1021/ja01238a017.
  49. Tovar G.R., Moreno, V.M.R., Dena, A.J.A., Hernandez, M.V., Bonilla, P.A. and Montes, M.M.A. (2013), "Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach", Chem. Eng. J., 228, 1098-1109. http://dx.doi.org/10.1016/j.cej.2013.05.080.
  50. Yiamouyiannis, J. and Burk, D. (1997), "Fluoridation and cancer, age-dependence of cancer mortality related to artificial fluoridation", Fluoride, 10, 102-124.
  51. Yoon, Y.H. and Nelson, J.H. (1984), "Application of gas adsorption kinetics I. A theoretical model for respirator Cartridge service life", Am. Ind. Hyg. Assoc. J., 45, 509-516. https://doi.org/10.1080/15298668491400197.
  52. Yu, J., Zhu, J., Feng, L., Cai, X., Zhang, Y. and Chi, R. (2014), "Removal of cationic dyes by modified waste biosorbent under continuous model: competitive adsorption and kinetics", Arab. J. Chem., 12, 2044-2051. https://doi.org/10.1016/j.arabjc.2014.12.022.
  53. Zhu, T., Zhu, T., Gao, J., Zhang, L., Zhang, W. (2017), "Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite", J Fluorine Chem., 194, 80-88. https://doi.org/10.1016/j.jfluchem.2017.01.002.