DOI QR코드

DOI QR Code

A novel laboratory method for measuring the hydraulic conductivity of dredged slurry with high water contents

  • Cong Mou (Institute of Geotechnical Engineering, Transportation College, Southeast University) ;
  • Jian-wen Ding (Institute of Geotechnical Engineering, Transportation College, Southeast University) ;
  • Jian-hua Wang (Institute of Geotechnical Engineering, Transportation College, Southeast University) ;
  • Xing Wan (Institute of Geotechnical Engineering, Transportation College, Southeast University)
  • Received : 2022.09.15
  • Accepted : 2023.03.14
  • Published : 2023.05.10

Abstract

Accurately measuring the hydraulic conductivity of dredged slurry (HCODS) is a difficult task and usually requires highly developed experimental techniques. To resolve such problem, this paper presents a novel laboratory method, where a double drainage sedimentation test (DDST) is proposed to generate a downward seepage after the end of primary consolidation (EOP). Based on the established stress equilibrium equations, it is figured out that the determination of local hydraulic gradients requires the effective stress distribution to be measured. Accordingly, an additional single drainage sedimentation test (SDST) with the same initial water content is performed in the novel laboratory method, which can be utilized to establish the relationship between effective stress and water content for investigated slurry. Thus, HCODS can be determined via a pair of SDST and DDST, with the water contents after the EOP measured. The corresponding calculation procedure is given in details. With a simply-designed settling column, the hydraulic conductivity tests were performed on three types of dredged slurry. The results demonstrated the effectiveness of the novel laboratory method in measuring HCODS.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant numbers 41977243, 52278334, and 51978159) and the International Postdoctoral Exchange Fellowship Program from China Postdoctoral Council (Grant number PC2021016). The authors would like to express appreciation to the reviewers for their valuable comments and suggestions that helped to improve the quality of the paper.

References

  1. Anda, R., Fu, H., Wang, J., Lei, H., Hu, X., Ye, Q., Cai, Y. and Xie, Z. (2020), "Effects of pressurizing timing on air booster vacuum consolidation of dredged slurry", Geotext. Geomembranes, 48(4), 491-503. https://doi.org/10.1016/j.geotexmem.2020.02.007.
  2. Been, K. and Sills, G.C. (1981), "Self-weight consolidation of soft soils: an experimental and theoretical study", Geotechnique, 31(4), 519-535. https://doi.org/10.1680/geot.1981.31.4.519.
  3. Berilgen, S.A. and Bulut, B.T. (2016), "Laboratory investigations for dewatering of golden horn dredged sludge with geotextile tubes", Mar. Georesour. Geotechnol., 34(7), 638-647. https://doi.org/10.1080/1064119X.2015.1068894.
  4. Bian, X., Wang, Z.F., Ding, G.Q. and Cao, Y.P. (2016), "Compressibility of cemented dredged clay at high water content with super-absorbent polymer", Eng. Geol., 208, 198-205. https://doi.org/10.1016/j.enggeo.2016.04.036.
  5. Chen, B., Sun, D.A. and Jin, P. (2019), "Experimental study of the effect of microstructure on the permeability of saturated soft clays", Geomech. Eng., 18(1), 49-58. https://doi.org/10.12989/gae.2019.18.1.049.
  6. Chian, S.C. and Bi, J. (2021), "Influence of grain size gradation of sand impurities on strength behaviour of cement-treated clay", Acta Geotech., 16(4), 1127-1145. https://doi.org/10.1007/s11440-020-01090-9.
  7. De Lillis, A., Rotisciani, G.M. and Miliziano, S. (2020), "Numerical investigation of the behaviour of hydraulically dredged fine-grained soils during and after filling of the containment facility of the port of Gaeta", Geotext. Geomembranes, 48(4), 591-601. https://doi.org/10.1016/j.geotexmem.2020.03.005.
  8. Develioglu, I. and Pulat, H.F. (2019), "Compressibility behaviour of natural and stabilized dredged soils in different organic matter contents", Constr. Build. Mater., 228, 116787. https://doi.org/10.1016/j.conbuildmat.2019.116787.
  9. Dong, C.Q., Zhang, R.J., Zheng, J.J. and Jiang, W.H. (2020), "Strength behavior of dredged mud slurry treated jointly by cement, metakaolin and flocculant", Appl. Clay Sci., 193, 105676. https://doi.org/10.1016/j.clay.2020.105676.
  10. Fox, P.J. and Baxter, C.D. (1997), "Consolidation properties of soil slurries from hydraulic consolidation test", J. Geotech. Geoenviron. Eng., 123(8), 770-776. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(770).
  11. Gao, Y.F., Zhang, Y., Zhou, Y. and Li, D.Y. (2016), "Effects of column diameter on setting behavior of dredged slurry in sedimentation experiments", Mar. Georesour. Geotechnol., 34(5), 431-439. https://doi.org/10.1080/1064119X.2015.1020975.
  12. Hong, Z.S., Yin, J. and Cui, Y.J. (2010), "Compression behaviour of reconstituted soils at high initial water contents", Geotechnique, 60(9), 691-700. https://doi.org/10.1680/geot.09.P.059.
  13. Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q. and Lin, C. (2012), "Compression behaviour of natural and reconstituted clays", Geotechnique, 62(4), 291-301. https://doi.org/10.1680/geot.10.P.046.
  14. Hossain, M. and Chai, J. (2014), "Estimating coefficient of consolidation and hydraulic conductivity from piezocone test results-Case studies", Geomech. Eng., 6(6), 577-592. https://doi.org/10.12989/gae.2014.6.6.577.
  15. Imai, G. (1979), "Development of a new consolidation test procedure using seepage force", Soils Found., 19(3), 45-60. https://doi.org/10.3208/sandf1972.19.3_45.
  16. Imai, G. (1981), "Experimental studies on sedimentation mechanism and sediment formation of clay materials", Soils Found., 21 (1), 7-20. https://doi.org/10.3208/sandf1972.21.7.
  17. Jun, S.H., Lee, J.H., Park, B.S. and Kwon, H.J. (2021), "Design charts for consolidation settlement of marine clays using finite strain consolidation theory", Geomech. Eng., 24(3), 295-305. https://doi.org/10.12989/gae.2021.24.3.295.
  18. Karadogan, u., Korkut, S., Cevikbilen, G., Teymur, B. and Koyuncu, I. (2021), "Evaluation of beneficial of polyacrylamide use dewatering of dredged sludge obtained from golden horn", Mar. Georesour. Geotechnol., 39(8), 919-928. https://doi.org/10.1080/1064119X.2020.1780526.
  19. Kim, H.J., Won, M.S., Lee, J.B., Joo, J.H. and Jamin, J.C. (2015), "Comparative study on the behavior of soil fills on rigid acrylic and flexible geotextile containers", Geomech. Eng., 9(2), 243-259. https://doi.org/10.12989/gae.2015.9.2.243.
  20. Lei, H., Feng, S. and Jiang, Y. (2018), "Geotechnical characteristics and consolidation properties of Tianjin marine clay", Geomech. Eng., 16(2), 125-140. https://doi.org/10.12989/gae.2018.16.2.125.
  21. Pane, V. and Schiffman, R.L. (1997), "The permeability of clay suspensions", Geotechnique, 47(2), 273-288. https://doi.org/10.1680/geot.1997.47.2.273.
  22. Wu, Y., Kong, G., Lu, Y. and Sun, D.A. (2017), "Experimental study on vacuum preloading with flocculation for solid-liquid separation in waste slurry", Geomech. Eng., 13(2), 319-331. https://doi.org/10.12989/gae.2017.13.2.319.
  23. Wu, Y., Jiang, H., Lu, Y. and Sun, D. (2019), "Experimental study on treatment of waste slurry by vacuum preloading with different conditioning agents", Geomech. Eng., 17(6), 543-551. https://doi.org/10.12989/gae.2019.17.6.543.
  24. Xu, G.Z., Gao, Y.F., Hong, Z.S. and Ding, J.W. (2012), "Sedimentation behavior of four dredged slurries in China", Mar. Georesour. Geotechnol., 30(2), 143-156. https://doi.org/10.1080/1064119X.2011.602382. Yoobanpot, N., Jamsawang, P., Krairan, K., Jongpradist, P. and
  25. Horpibulsuk, S. (2018), "Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment", Geomech. Eng., 15(4), 1005-1016. https://doi.org/10.12989/gae.2018.15.4.1005.
  26. Zeng, L.L., Hong Z.S. and Cui, Y.J. (2015), "On the volumetric strain-time curve pattern of dredged clays during primary consolidation", Geotechnique, 65(12), 1023-1028. https://doi.org/10.1680/jgeot.15.T.003.
  27. Zeng, L.L., Hong, Z.S., Tian, W.B. and Shi, J.W. (2018), "Settling behavior of clay suspensions produced by dredging activities in China", Mar. Georesour. Geotechnol., 36(1), 30-37. https://doi.org/10.1080/1064119X.2016.1274808.
  28. Zeng, L.L., Cai, Y.Q., Cui, Y.J. and Hong, Z.S. (2020a), "Hydraulic conductivity of reconstituted clays based on intrinsic compression", Geotechnique, 70(3), 268-275. https://doi.org/10.1680/jgeot.18.P.096.
  29. Zeng, L.L., Hong, Z.S. and Cui, Y.J. (2020b), "United void index for normalizing virgin compression of reconstituted clays", Can. Geotech. J., 57(10), 1497-1507. https://doi.org/10.1139/cgj-2019-0507.
  30. Zhang, N., Zhu, W., He, H. and Lv, Y. (2017), "Experimental study on sedimentation and consolidation of soil particles in dredged slurry", KSCE J. Civ. Eng., 21(7), 2596-2606. https://doi.org/10.1007/s12205-017-0068-1.