Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 42077262, 42077261, and 41972294)
References
- Altay, G., Kayadelen, C., Canakci, H., Bagriacik, B., Ok, B. and Oguzhanoglu, M.A. (2021), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419.
- Ardakani, A. and Namaei, A. (2021), "Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect", Geomech. Eng., 24(6), 589-597. https://doi.org/10.12989/gae.2021.24.6.589.
- Ari, A. and Misir, G. (2021), "Three-dimensional numerical analysis of geocell reinforced shell foundations", Geotext. Geomembranes, 49(4), 963-975. https://doi.org/10.1016/j.geotexmem.2021.01.006.
- Bathurst, R.J. and Karpurapu, R. (1993), "Large-scale triaxial compression testing of geocell-reinforced granular soils", Geotech. Test. J., 16(3), 296-303. https://doi.org/10.1016/0148-9062(94)93106-2.
- Biswas, A., Murali Krishna, A. and Dash, S. K. (2013), "Influence of subgrade strength on the performance of geocell-reinforced foundation systems", Geosynth. Int., 20(6), 376-388. https://doi.org/10.1680/gein.13.00025.
- Biswas, S., Hussain, M. and Singh, K.L. (2021), "Behaviour of jute and bamboo geocell with additional basal mat filled with different infill materials overlaying soft subgrade", Int. J. Geosynth. Ground Eng., 7(3), https://doi.org/10.1007/s40891-021-00297-4
- Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. https://doi.org/10.12989/gae.2017.13.4.641.
- Chaney, R.C., Demars, K.R., Krishnaswamy, N.R., Rajagopal, K. and Madhavi Latha, G. (2000), "Model studies on geocell supported embankments constructed over a soft clay foundation", Geotech. Test. J., 23(1), 45-54. https://doi.org/10.1520/gtj11122j
- Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K. (2001), "Bearing capacity of strip footings supported on geocell-reinforced sand", Geotext. Geomembranes, 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1
- Dehkordi, P.F., Ghazavi, M., Ganjian, N. and Karim, U.F.A. (2019), "Effect of geocell-reinforced sand base on bearing capacity of twin circular footings", Geosynth. Int., 26(3), 224-236. https://doi.org/10.1680/jgein.19.00047.
- Dutta, S. and Mandal, J.N. (2016), "Model studies on geocell-reinforced fly ash bed overlying soft clay", J. Mater. Civil Eng., 28(2), 04015091. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001356.
- Gedela, R., Kalla, S., Sudarsanan, N. and Karpurapu, R. (2021), "Assessment of Load Distribution Mechanism in Geocell Reinforced Foundation Beds using Digital Imaging Correlation Techniques. Transp. Geotech., No. 100664. https://doi.org/10.1016/j.trgeo.2021.100664.
- Gedela, R. and Karpurapu, R. (2021a), "Influence of pocket shape on numerical response of geocell reinforced foundation systems", Geosynth. Int., 28(3), 327-337. https://doi.org/10.1680/jgein.20.00042.
- Gedela, R. and Karpurapu, R. (2021b), "Laboratory and numerical studies on the performance of geocell reinforced base layer overlying soft subgrade", Int. J. Geosynth. Ground Eng., 7(1), 1-18. https://doi.org/10.1007/s40891-020-00249-4.
- George, A.M., Banerjee, A., Puppala, A.J. and Saladhi, M. (2021), "Performance evaluation of geocell-reinforced reclaimed asphalt pavement (RAP) bases in flexible pavements", Int. J. Pavement Eng., 22(2), 181-191. https://doi.org/10.1080/10298436.2019.1587437.
- Hegde, A. and Sitharam, T.G. (2016), "Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading", Geomech. Eng., 10(4), 405-422. https://doi.org/10.12989/gae.2016.10.4.405.
- Hegde, A. and Sitharam, T.G. (2017), "Experiment and 3Dnumerical studies on soft clay bed reinforced with different types of cellular confinement systems", Transp. Geotech., 10, 73-84. https://doi.org/10.1016/j.trgeo.2017.01.001.
- Hegde, A.M. and Sitharam, T.G. (2015), "Effect of infill materials on the performance of geocell reinforced soft clay beds", Geomech. Geoeng., 10(3), 163-173. https://doi.org/10.1080/17486025.2014.921334.
- Itasca (2018), Fast Lagrangian Analysis of Continua (FLAC3D 6.0). Itasca Consulting Group Inc, Minneapolis, USA.
- Kargar, M. and Mir Mohammad Hosseini, S.M. (2018), "Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases", Eur. J. Environ. Civil Eng., 22(5), 596-613. https://doi.org/10.1080/19648189.2016.1214181.
- Khalaj, O., Tafreshi, S.N.M., Masek, B. and Dawson, A.R. (2015), "Improvement of pavement foundation response with multilayers of geocell reinforcement: Cyclic plate load test", Geomech. Eng., 9(3), 373-395. https://doi.org/10.12989/gae.2015.9.3.373.
- Kumar, A., Singh, A.P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance trafficability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
- Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-130. https://doi.org/10.12989/gae.2011.3.2.117.
- Latha, G.M. and Somwanshi, A. (2009), "Effect of reinforcement form on the bearing capacity of square footings on sand", Geotext. Geomembranes, 27(6), 409-422. https://doi.org/10.1016/j.geotexmem.2009.03.005.
- Lu, Z., Xian, S., Yao, H., Fang, R. and She, J. (2019), "Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil", Cold Reg. Sci. Technol., 157, 42-52. https://doi.org/10.1016/j.coldregions.2018.09.009.
- Luo, X., Lu, Z., Yao, H., Zhang, J. and Song, W. (2021), "Experimental study on soft rock subgrade reinforced with geocell", Road Mater. Pavement Design, 1-15. https://doi.org/10.1080/14680629.2021.1948907.
- Moghaddas Tafreshi, S.N., Rafiezadeh Malekshah, A., Rahimi, M. and Dawson, A.R. (2021), "Bearing capacity improvement using soil-filled post-consumer PET bottles", Geosynth. Int., 1-29. https://doi.org/10.1680/jgein.21.00031.
- Moghaddas Tafreshi, S.N., Sharifi, P. and Dawson, A.R. (2016), "Performance of circular footings on sand by use of multiple-geocell or -planar geotextile reinforcing layers", Soils Found., 56(6), 984-997. https://doi.org/10.1016/j.sandf.2016.11.004.
- Oliaei, M. and Kouzegaran, S. (2017), "Efficiency of cellular geosynthetics for foundation reinforcement", Geotext. Geomembranes, 45(2), 11-22. https://doi.org/10.1016/j.geotexmem.2016.11.001.
- Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L. and Halahmi, I. (2010), "Investigation of factors influencing behavior of single geocell-reinforced bases under static loading", Geotext. Geomembranes, 28(6), 570-578. https://doi.org/10.1016/j.geotexmem.2010.06.002.
- Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. https://doi.org/10.12989/gae.2013.5.3.263.
- Sheikh, I.R. and Shah, M.Y. (2020), "State-of-the-art review on the role of geocells in soil reinforcement", Geotech. Geol. Eng., 39(3), 1727-1741. https://doi.org/10.1007/s10706-020-01629-3.
- Sireesh, S., Sitharam, T.G. and Dash, S.K. (2009), "Bearing capacity of circular footing on geocell-sand mattress overlying clay bed with void", Geotext. Geomembranes, 27(2), 89-98. https://doi.org/10.1016/j.geotexmem.2008.09.005.
- Sitharam, T.G. and Hegde, A. (2013), "Design and construction of geocell foundation to support the embankment on settled red mud", Geotext. Geomembranes, 41, 55-63. https://doi.org/10.1016/j.geotexmem.2013.08.005.
- Sitharam, T.G. and Sireesh, S. (2005), "Behavior of embedded footings supported on geogrid cell reinforced foundation beds", Geotech. Test. J., 28(5), 452-463. https://doi.org/10.1520/GTJ12751.
- Song, F. and Tian, Y. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1), 1-9. https://doi.org/10.12989/gae.2019.17.1.001.
- Suku, L., Prabhu, S.S., Ramesh, P. and Babu, G.L.S. (2016), "Behavior of geocell-reinforced granular base under repeated loading", Transp. Geotech., 9, 17-30. https://doi.org/10.1016/j.trgeo.2016.06.002.
- Tafreshi, S.N.M., Darabi, N.J. and Dawson, A.R. (2018), "Cyclic loading response of footing on multilayered rubber-soil mixtures", Geomech. Eng., 14(2), 115-129. https://doi.org/10.12989/gae.2018.14.2.115.
- Tafreshi, S.N.M. and Dawson, A.R. (2010), "Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement", Geotext. Geomembranes, 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003.
- Thakur, J.K., Han, J. and Parsons, R.L. (2017), "Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading", J. Mater. Civil Eng., 29(3), 04016240. https://doi.org/10.1061/(asce)mt.1943-5533.0001760.
- Thakur, J.K., Han, J., Pokharel, S.K. and Parsons, R.L. (2012), "Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading", Geotext. Geomembranes, 35, 14-24. https://doi.org/10.1016/j.geotexmem.2012.06.004.
- Thallak, S.G., Saride, S. and Dash, S.K. (2007), "Performance of surface footing on geocell-reinforced soft clay beds", Geotech. Geol. Eng., 25(5), 509-524. https://doi.org/10.1007/s10706-007-9125-8.
- Xian, S. (2019), "Study on mechanical properties and service performance of levee filling in deep seasonal frozen regions", Ph.D., Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.