DOI QR코드

DOI QR Code

Application of optimized time domain reflectometry probe for estimating contaminants in saline soil

  • Dongsoo Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yong-Hoon Byun (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University) ;
  • Sang Yeob Kim (Department of Fire and Disaster Prevention, Konkuk University)
  • Received : 2023.02.01
  • Accepted : 2023.03.08
  • Published : 2023.05.10

Abstract

Monitoring contaminants in waste landfills on a seabed is important because the leachate affects the marine ecosystem and facility stability. The objective of this study is to optimize a time-domain reflectometry (TDR) probe using different coating materials and several electrodes to estimate contaminants in saline soil. Copper concentrations ranging from 0 mg/L to 10 mg/L were mixed in 3% salinity water to simulate contaminants in the ocean environment. Epoxy, top-coat, and varnish were used as coating materials, and two to seven electrodes were prepared to vary the number and arrangement of the electrodes. Test results showed that the varnish stably captured the increase in copper concentration, while the other coating materials became insensitive or caused leakage current. In addition, a TDR probe with more electrodes exhibited stable and distinct electromagnetic signals. Thus, the TDR probe with seven electrodes coated with varnish was effectively used to estimate contaminants in saline soil.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2021R1A5A1032433; NRF2021R1C1C2008932).

References

  1. Ahmadi, Z. (2019), "Epoxy in nanotechnology: A short review", Prog. Org. Coat., 132, 445-448. https://doi.org/10.1016/j.porgcoat.2019.04.003.
  2. Atta, A.M., El-Saeed, A.M., El-Mahdy, G.M. and Lohedan, H.A (2015), "Application of magnetite nano-hybrid epoxy as protective marine coatings for steel", RSC Adv., 5(123), 101923-101931. https://doi.org/10.1039/C5RA20730D.
  3. Benson, A.K., Payne, K.L. and Stubben, M.A. (1997), "Mapping groundwater contamination using dc resistivity and VLF geophysical methods-A case study", Geophysics, 62(1), 80-86. https://doi.org/10.1190/1.1444148.
  4. Bhattacharya, S.K. and Tummala, R.R. (2001), "Integral passives for next generation of electronic packaging: Application of epoxy/ceramic nanocomposites as integral capacitors", Microelectron. J., 32(1), 11-19. https://doi.org/10.1016/S0026-2692(00)00104-X.
  5. Bonaparte, R. and Gross, B.A. (1990), "Field behavior of doubleliner systems", Waste Containment Systems: Construction, Regulation, and Performance ASCE Geotechnical Special, 26 52-83.
  6. Buselli, G. and Lu, K. (2001), "Groundwater contamination monitoring with multichannel electrical and electromagnetic methods", J. Appl. Geophys., 48(1), 11-23. https://doi.org/10.1016/S0926-9851(01)00055-6.
  7. Calamita, G., Perrone, A., Brocca, L. and Straface, S. (2017), "Soil electrical resistivity for spatial sampling design, prediction, and uncertainty modeling of soil moisture", Vadose Zone J., 16(10), 1-14. https://doi.org/10.2136/vzj2017.01.0022.
  8. Campbell, J.E. (1990), "Dielectric properties and influence of conductivity in soils at one to fifty megahertz", Soil Sci. Soc. Am. J., 54(2), 332-341. https://doi.org/10.2136/sssaj1990.03615995005400020006x.
  9. Cherry, J.A., Gillham, R.W., Anderson, E.G. and Johnson, P.E. (1983), "Migration of contaminants in groundwater at a landfill: A case study: 2. Groundwater monitoring devices", J. Hydrology, 63(1-2), 31-49. https://doi.org/10.1016/0022-1694(83)90222-6.
  10. Chung, C.C. and Lin, C.P. (2011), "High concentration suspended sediment measurements using time domain reflectometry", J. Hydrology, 401(1-2), 134-144. https://doi.org/10.1016/j.jhydrol.2011.02.016.
  11. Clement, R., Descloitres, M., Gunther, T., Oxarango, L., Morra, C., Laurent, J.P. and Gourc, J.P. (2010), "Improvement of electrical resistivity tomography for leachate injection monitoring", Waste Manag., 30(3), 452-464. https://doi.org/10.1016/j.wasman.2009.10.002.
  12. Dalton, F.N. and Van Genuchten, M.T. (1986), "The time-domain reflectometry method for measuring soil water content and salinity", Geoderma. 38(1-4), 237-250. https://doi.org/10.1016/0016-7061(86)90018-2.
  13. Fujiyasu, Y., Pierce, C.E., Fan, L. and Wong, C.P. (2004), "High dielectric insulation coating for time domain reflectometry soil moisture sensor", Water Resour. Res., 40(4). https://doi.org/10.1029/2003WR002460.
  14. Giese, K. and Tiemann, R. (1975), "Determination of the complex permittivity from thin-sample time domain reflectometry improved analysis of the step response waveform", Adv. Mol. Relax. Process., 7(1), 45-59. https://doi.org/10.1016/0001-8716(75)80013-7.
  15. Heimovaara, T.J. (1994), "Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils", Water Resour. Res., 30(2), 189-199. https://doi.org/10.1029/93WR02948.
  16. Hong, W.T., Lee, J.S., Lee, D. and Yoon, H.K. (2022), "Estimation of bulk electrical conductivity in saline medium with contaminated lead solution through TDR coupled with machine learning", Process Saf. Environ. Prot., 161, 58-66. https://doi.org/10.1016/j.psep.2022.03.018.
  17. Hong, W.T., Yu, J.D., Kim, S.Y. and Lee, J.S. (2019), "Dynamic cone penetrometer incorporated with time domain reflectometry (TDR) sensors for the evaluation of water contents in sandy soils.", Sensors, 19(18), 3841. https://doi.org/10.3390/s19183841.
  18. Jones, S.B., Wraith, J.M. and Or, D. (2002), "Time domain reflectometry measurement principles and applications", Hydrol. Process., 16, 141-153. https://doi.org/10.1002/hyp.513.
  19. Kahlouche, H., Gheris, A. and Guenfoud, M. (2021), "Characterisation of the chemo-mechanical behaviour of clays polluted by BTEX: a case study of benzene.", Int. J. Geo-Eng., 12(1), 1-30. https://doi.org/10.1186/s40703-021-00157-0.
  20. Kim, S.Y., Hong, W.T. and Lee, J.S. (2018), "Silt fraction effects of frozen soils on frozen water content, strength, and stiffness", Constr. Build. Mater., 183, 565-577. https://doi.org/10.1016/j.conbuildmat.2018.06.187.
  21. Kim, S.Y., Kim, Y. and Lee, J.S. (2021), "Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials.", Constr. Build. Mater., 266, 120912. https://doi.org/10.1016/j.conbuildmat.2020.120912.
  22. Knight, J.H. (1992), "Sensitivity of time domain reflectometry measurements to lateral variations in soil water content.", Water Resour. Res., 28(9), 2345-2352. https://doi.org/10.1029/92WR00747.
  23. Lee, D., Lee, J.S., Hong, W.T. and Yu, J.D. (2018), "Development of time domain reflectometry probe for evaluation of copper concentration in saline environment", J. Korean Geo-Env. Soc., 19(3), 15-24. https://doi.org/10.14481/jkges.2018.19.3.15.
  24. Lee, J.S., Yu, J.D., Han, K. and Kim, S.Y. (2020), "Strength characteristics of sand-silt mixtures subjected to cyclic freezing-thawing-repetitive loading.", Sensors, 20(18), 5381. https://doi.org/10.3390/s20185381.
  25. Lee, S.G., Kwon, K.S., Kim, B.J., Choi, N.C., Choi, J.W. and Lee, S. (2019), "Detection of oil leakage in soil by monitoring impedance using time domain reflectometry and hydraulic control system.", Process Saf. Environ. Prot., 127, 267-276. https://doi.org/10.1016/j.psep.2019.05.023.
  26. Li, L., Chen, H., Huang, Y., Xu, G. and Zhang, P. (2022), "A new small leakage detection method based on capacitance array sensor for underground oil tank.", Process Saf. Environ. Prot., 159, 616-624. https://doi.org/10.1016/j.psep.2022.01.020.
  27. Mas-Pla, J., Rodriguez-Florit, A., Zamorano, M., Roque, C., Mencio, A. and Brusi, D. (2013), "Anticipating the effects of groundwater withdrawal on seawater intrusion and soil settlement in urban coastal areas", Hydrol. Process., 27(16), 2352-2366. https://doi.org/10.1002/hyp.9377.
  28. Mojid, M.A., Hossain, A.B.M.Z., Cappuyns, V. and Wyseure, G.C.L. (2016), "Transport characteristics of heavy metals, metalloids and pesticides through major agricultural soils of Bangladesh as determined by TDR", Soil Res., 54(8), 970-984. https://doi.org/10.1071/SR15367.
  29. Munoz-Carpena, R., Regalado, C.M., Ritter, A., Alvarez-Benedi, J. and Socorro, A.R. (2005), "TDR estimation of electrical conductivity and saline solute concentration in a volcanic soil", Geoderma, 124(3-4), 399-413. https://doi.org/10.1016/j.geoderma.2004.06.002.
  30. Noborio, K. (2001), "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review", Comput. Electron. Agric., 31(3), 213-237. https://doi.org/10.1016/S0168-1699(00)00184-8.
  31. O'Connor, K.M. and Dowding, C.H. (2021), Geomeasurements by Pulsing TDR Cables and Probes, CRC Press, Boca Raton, Florida, USA.
  32. Oh, M., Lee, J.H., Park, J.B., Kim, H.S. and Kang, W.S. (2001), "Development of contaminant leakage detection system using electrical resistance measurement: II. Evaluation of applicability for landfill site by field model tests", J. Korean Geotech. Soc., 17, 225-233.
  33. Park, H., Oh, M. and Kwon, O. (2016), "Analysis on contaminant transport according to the embedded depth of vertical barrier of offshore landfill.", J. Korean Geo-Env. Soc., 17(8), 29-37. https://doi.org/10.14481/jkges.2016.17.8.29.
  34. Park, S., Yi, M.J., Kim, J.H. and Shin, S.W. (2016), "Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea", J. Appl. Geophys., 135, 1-7. https://doi.org/10.1016/j.jappgeo.2016.07.004.
  35. Raheem, A.M. and Omar, N.Q. (2021), "Investigation of distinctive physico-chemical soil correlations for Kirkuk city using spatial analysis technique incorporated with statistical modeling", Int. J. Geo-Eng., 12(1), 1-21. https://doi.org/10.1186/s40703-021-00147-2.
  36. Spergel, J. (1972), Coaxial Cable and Connector Systems, Handbook of Wiring, Cabling, and Interconnecting for Electronics, (Harper, C.A. Ed.), McGraw-Hill, New York, USA.
  37. Suwansawat, S. and Benson, C.H. (1999), "Cell size for water content-dielectric constant calibrations for time domain reflectometry.", Geotech. Test. J., 22, 3-12. https://doi.org/10.1520/GTJ11311J.
  38. Topp, G.C. and Davis, J.L. (1985), "Time-domain reflectometry (TDR) and its application to irrigation scheduling, in: Advances in Irrigation", Adv. Irrigation, 3, 107-127. https://doi.org/10.1016/B978-0-12-024303-7.50008-X.
  39. Topp, G.C., Yanuka, M., Zebchuk, W.D. and Zegelin, S. (1988), "Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines", Water Resour. Res., 24(7), 945-952. https://doi.org/10.1029/WR024i007p00945.
  40. Vogeler, I. (2001), "Copper and calcium transport through an unsaturated soil column", J. Environ. Qual., 30(3), 927-933. https://doi.org/10.2134/jeq2001.303927x.
  41. Wang, G., Chai, K., Wu, J. and Liu, F. (2016), "Effect of Pseudomonas putida on the degradation of epoxy resin varnish coating in seawater", Int. Biodeterior. Biodegrad., 115, 156-163. https://doi.org/10.1016/j.ibiod.2016.08.017.
  42. White, I. and Zegelin, S.J. (2018), Electric and dielectric methods for monitoring soil-water content, in: Handbook of Vadose Zone Characterization & Monitoring, CRC Press, Boca Raton, Florida, USA.
  43. Xiao, K., Dong, C., Zhang, X., Wu, J., Xu, L. and Li, X. (2012), "Corrosion of carbon steel under epoxy-varnish coating studied by scanning Kelvin probe", J. Wuhan Univ. Technol. (Mater. Sci. Ed.). 27, 825-829. https://doi.org/10.1007/s11595-012-0556-6.
  44. Yeh, J.M., Huang, H.Y., Chen, C.L., Su, W.F. and Yu, Y.H. (2006), "Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach", Surf. Coatings Technol., 200, 2753-2763. https://doi.org/10.1016/j.surfcoat.2004.11.008.
  45. Yu, J.D., Kim, S.Y. and Lee, J.S. (2020), "Variations in velocity and sensitivity of electromagnetic waves in transmission lines configured in model piles with necking defects containing soils", Sensors, 20(22), 6541. https://doi.org/10.3390/s20226541.
  46. Zegelin, S.J., White, I. and Jenkins, D.R. (1989), "Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry", Water Resour. Res., 25(11), 2367-2376. https://doi.org/10.1029/WR025i011p02367.
  47. Zhang, H., Dun, Y., Tang, Y., Zuo, Y. and Zhao, X. (2016), "Correlation between natural exposure and artificial ageing test for typical marine coating systems", J. Appl. Polym. Sci., 133(36). https://doi.org/10.1002/app.43893.