Acknowledgement
This work was supported by Inha University Research Grant (2023).
References
- Adegoke, M., Wong, H.T., Leung, A.C.S. and Sum, J. (2019), "Two noise tolerant incremental learning algorithms for single layer feed-forward neural networks", J. Ambient Intell. Human Comput., https://doi.org/10.1007/s12652-019-01488-8.
- Akinwekomi, A.D. and Lawal, A.I. (2021), "Neural network-based model for predicting particle size of AZ61 powder during high energy mechanical milling", Neural. Comput. Appl., 33, 17611-17619, https://doi.org/10.1007/s00521-021-06345.
- Altindag, R. (2010), "Assessment of some brittleness indices in rock-drilling efficiency", Rock Mech. Rock Eng., 43(3), 361-370. https://doi:10.1007/s00603-009-0057-x.
- Altindag, R. and Guney, A. (2010), "Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks", J. Sci. Res. Essay, 5, 35-39. https://doi.org/10.5897/SRE.9000753.
- Andreev, G.E. (1995), Brittle failure of rock materials: Test results and constitutive models, Rotterdam: A. A. Balkema.
- Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
- ASTM (1995), Standard practice for preparing rock core specimens and determining dimension and shape tolerances. American Society for Testing and Materials. D4543.
- ASTM (1995), Standard test method for splitting tensile strength of intact rock core specimens. American Society for Testing and Materials. D3967.
- ASTM (1995), Standard test method for unconfined compressive strength of intact rock core specimens. American Society for Testing and Materials. D2938.
- Bishop, C.M. (1995), Neural network for pattern recognition, 1st Ed. Oxford University Press.
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. ISBN 978-0-412-04841-8.
- Cheng, W., Jin, Y. and Chen, M. (2015), "Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs". J. Nat. Gas Sci Eng., 23, 431-439. https://doi:10.1016/j.jngse. 2015.01.031.
- Craven, P. and Wahba, G. (1979). "Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation". Numer. Math., 31, 317-403. https://doi.org/10.1007/BF01404567.
- Dehghan, S., Sattari, G., Chelgani, S.C. and Aliabadi, M. (2010), "Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks", Min. Sci. Technol., 20, 41-46. https://doi.org/10.1016/S1674-5264(09)60158-7.
- Ebrahimi, E., Monjezi, M., Khalesi, M.R. and Armaghani, D.J. (2015), "Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm", Bull. Eng. Geol. Environ., 75, 27-36. https://doi.org/10.1007/s10064-015-0720-2.
- Fattahi, H. and Hasanipanah, M. (2021), "Predicting the shear strength parameters of rock: A comprehensive intelligent approach", Geomech. Eng., 27(5), 511-525. https://doi.org/10.12989/gae.2021.27.5.511.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19(1), 1-67. https://doi.org/10.1214/aos/1176347963.
- Garson, G.D. (1991), "Interpreting neural network connection weights", Artif. Intell. Exp., 6, 47-51. https://doi.org/10.5555/129449.129452.
- Gevrey, M., Dimopoulos, I. and Lek, S. (2003), "Review and comparison of methods to study the contribution of variables in artificial neural network models", Ecol. Modell., 160(3), 249-264. https://doi.org/10.1016/S0304-3800(02)00257-0.
- Guo, J.C., Luo, B., Zhu, H.Y., Wang, Y.H., Lu, Q.L. and Zhao, X. (2015), "Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin", J. Nat. Gas Sci. Eng., 25, 77-87. https://doi.org/10.1016/j.jngse.2015.04.026.
- Hajiabdolmajid, V. and Kaiser, P. (2003), "Brittleness of rock and stability assessment in hard rock tunnelling", Tunn. Undergr. Sp. Technol., 18(1), 35-48. https://10.1016/S0886-7798(02)00100-1.
- Huang, X.R., Huang, J.P., Li, Z.C., Yang, Q.Y., Sun, Q.X. and Wei, C. (2015), "Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs", Appl. Geophys., 12(1), 11-22. https://10.1007/s11770-014-0478-0.
- Hucka, V. and Das, B. (1974), "Brittleness determination of rocks by different methods". International Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11, 389-392. https://doi.org/10.1016/0148-9062(74)91109-7.
- Hussain, A., Surendar, A., Clementking, A., Kanagarajan, S. and Ilyashenko, L.K. (2018), "Rock brittleness prediction through two optimization algorithms namely particle swarm optimization and imperialism competitive algorithm". Eng. Comput., 35, 1027-1035. https://doi.org/10.1007/s00366-018-0648-9.
- Kaunda, R.B. and Asbury, B. (2016), "Prediction of rock brittleness using nondestructive methods for hard rock tunnelling", J. Rock Mech. Geotech. Eng., 8(4), 533-540, http://dx.doi.org/10.1016/j.jrmge.2016.03.002.
- Koopialipoor, M., Noorbakhsh, A., Ghaleini, E.N., Armaghani, D.J. and Yagiz, S. (2019), "A new approach for estimation of rock brittleness based on non-destructive tests", J. Nondestruct. Eval., 34(4), 354-375. https://doi.org/10.1080/10589759.2019.1623214.
- Lawal, A.I. (2020), "An artificial neural network-based mathematical model for the prediction of blast-induced ground vibration in granite quarries in Ibadan, Oyo State, Nigeria", Sci. African, 8, e00413. https://doi.org/10.1016/j.sciaf.2020.e00413.
- Lawal, A.I. and Idris, M.A. (2019), "An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations". Int. J. Environ Std., 77(2), 318-334. https://doi.org/10.1080/00207233.2019.1662186.
- Lawal, A.I. and Kwon, S. (2020), "Application of artificial intelligence in rock mechanics: an overview", J. Rock Mech. Geotech. Eng., 13, 248-266. https://doi.org/10.1016/j.jrmge.2020.05.010.
- Lawal, A.I., Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using GPR, ANN, and response surface method", Geomech. Eng., 28(3), 4547-4563. https://doi.org/10.12989/gae.2022.28.3.313.
- Lawal, A.I., Oniyide, G.O., Kwon, S., Onifade, M., Koken, E, and Ogunsola, N.O. (2021a), "Prediction of mechanical properties of coal from non-destructive properties: A comparative application of MARS, ANN, and GA", Nat. Resour. Res., 30(6), 4547-4563. https://doi.org/10.1007/s11053-021-09955-w
- Lawal, A.I., Kwon, S., Hammed, O.S. and Idris, M.A. (2021b), "Blast-induced ground vibration prediction in granite quarries: An application of Gene expression programming, ANFIS, and Sine Cosine algorithm optimized ANN", Int. J. Min. Sci. Tech., 31, 265-277. https://doi.org/10.1016/j.ijmst.2021.01.007
- Lawn, B.R., Jensen, T. and Arora, A. (1976), "Brittleness as an indentation size effect", J. Mat. Sci., 11(3), 573-575. https://doi:10.1007/BF00540940.
- Leathwick, J.R., Rowe, D., Richardson, J., Elith, J. and Hastie, T. (2005), "Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish", Fresh W Biol., 50, 2034-2051. https://doi:10.1111/j.1365-2427.2005.01448.x
- Meng, F.Z., Zhou, H., Zhang, C.Q., Xu, R.C. and Lu, J.J. (2015), "Evaluation methodology of brittleness of rock based on post-peak stress-strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi:10.1007/s00603-014-0694-6.
- Quinlan, J.R. (1992), "Learning with continuous classes", Adams S (ed) Proceedings of AI'92. World Scientific, Singapore.
- Rickman, R., Mullen, M.J., Petre, J.E., Grieser, W.V. and Kundert, D. (2008), "A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale", SPE 115258 Proceeding of Annual Technical Conference, Society of Petroleum Engineers, Denver, CO, USA.
- Rybacki, E., Meier, T. and Dresen, G. (2016), "What controls the mechanical properties of shale rocks? - Part II: Brittleness", J. Pet. Sci. Eng., 144, 39-58. https://doi:10.1016/j.petrol.2016.02.022.
- Sihag, P., Karimi, S.M. and Angelaki, A. (2019), "Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity". App. W. Sci., 9, 129. https://doi.org/10.1007/s13201-019-1007-8.
- Sun, D., Lonbani, M., Askarian, B., Armaghani, D.J., Tarinejad, R., Pham, B.T. and Huynh, V.V. (2020). "Investigating the applications of machine learning techniques to predict the rock brittleness index", Appl. Sci., 10, 1691. doi:10.3390/app10051691
- Sun, H., Du, W.S. and Chi, L. (2021), "Uniaxial compressive strength determination of rocks using X-ray computed tomography and convolutional neural networks", Rock Mech. Rock Eng., 54, 4225-4237. https://doi.org/10.1007/s00603-021-02503-1.
- Tarasov, B. and Potvin, Y. (2013), "Universal criteria for rock brittleness estimation under triaxial compression", Int. J. Rock Mech. Min. Sci., 59, 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011.
- Wang, H., Cai, R., Zhou, B., Aziz, S., Qin, B., Voropai, N., Gan, L. and Barakhtenko, E. (2020), "Solar irradiance forecasting based on direct explainable neural network", Energ. Convers. Manage, 226, 113487, https://doi.org/10.1016/j.enconman.2020.113487.
- Xia, Y., Zhou, H., Zhang, C., He, S., Gao, Y. and Wang, P. (2019), "The evaluation of rock brittleness and its application: a review study", Eur. J. Environ. Civ., 22(1), 239-279. https://doi.org/10.1080/19648189.2019.1655485.
- Yagiz, S. (2009), "Assessment of brittleness using rock strength and density with punch penetration test", Tunn. Undergr. Sp. Technol., 24(1), 66-74. https://doi:10.1016/j.tust.2008.04.002.
- Yagiz, S. and Gokceoglu, C. (2010), "Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness", Exp. Syst. Appl., 37(3), 2265-2272. https://doi.org/10.1016/j.eswa.2009.07.046.
- Yagiz, S., Ghasemi, E. and Adoko, A.C. (2018), "Prediction of rock brittleness using genetic algorithm and particle swarm optimization techniques", Geotech. Geol. Eng., 36, 3767-3777, https://doi.org/10.1007/s10706-018-0570-3.
- Yuvaraj, P., Murthy, A.R, Iyer, N.R, Samui, P. and Sekar, S.K. (2013), "Multivariate adaptive regression splines model to predict fracture characteristics of high strength and ultra high strength concrete beams", Tech Sci. Press, CMC, 36(1), 73-97.