DOI QR코드

DOI QR Code

Proposing new models to predict pile set-up in cohesive soils

  • Received : 2021.09.04
  • Accepted : 2023.01.13
  • Published : 2023.05.10

Abstract

This paper represents a comparative study in which Gene Expression Programming (GEP), Group Method of Data Handling (GMDH), and multiple linear regressions (MLR) were utilized to derive new equations for the prediction of time-dependent bearing capacity of pile foundations driven in cohesive soil, technically called pile set-up. This term means that many piles which are installed in cohesive soil experience a noticeable increase in bearing capacity after a specific time. Results of researches indicate that side resistance encounters more increase than toe resistance. The main reason leading to pile setup in saturated soil has been found to be the dissipation of excess pore water pressure generated in the process of pile installation, while in unsaturated conditions aging is the major justification. In this study, a comprehensive dataset containing information about 169 test piles was obtained from literature reviews used to develop the models. to prepare the data for further developments using intelligent algorithms, Data mining techniques were performed as a fundamental stage of the study. To verify the models, the data were randomly divided into training and testing datasets. The most striking difference between this study and the previous researches is that the dataset used in this study includes different piles driven in soil with varied geotechnical characterization; therefore, the proposed equations are more generalizable. According to the evaluation criteria, GEP was found to be the most effective method to predict set-up among the other approaches developed earlier for the pertinent research.

Keywords

References

  1. Abu-Farsakh, M.Y. and Haque, M.N. (2018), "Estimation and incorporation of pile setup into LRFD design methodology", Transportation Research Board 97th Annual Meeting, Washington DC, United State.
  2. Abu-Farsakh, M.Y., Haque, M.N., Tavera, E. and Zhang, Z. (2017), "Evaluation of pile setup from osterberg cell load tests and its cost-benefit analysis", Transport. Res. Record, 2656(1), 61-70. https://doi.org/10.3141%2F2656-07. https://doi.org/10.3141%2F2656-07
  3. Amanifard, N., Nariman-Zadeh, N., Farahani, M. and Khalkhali, A. (2008), "Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks", Energ. Convers. Management, 49(10), 2588-2594. https://doi.org/10.1016/j.enconman.2008.05.025.
  4. Anastasakis, L. and Mort, N. (2001), "The development of selforganization techniques in modelling: a review of the group method of data handling (GMDH)", Research report - University of sheffield department of automatic control and systems engineering.
  5. Armaghani, D.J., Asteris, P.G., Fatemi, S.A., Hasanipanah, M., Tarinejad, R., Rashid, A.S.A. and Huynh, V.V. (2020), "On the use of neuro-swarm system to forecast the pile settlement", Appl. Sci., 10(6), 1904-1921. https://doi.org/10.3390/app10061904.
  6. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  7. Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheuristic Comput. Appl., 1(1), 1-18. https://doi.org/10.12989/mca.2020.1.1.018.
  8. Axelsson, G. (1998), "Long-term increase in shaft capacity of driven piles in sand".
  9. Banaei Moghadam, S. and Khanmohammadi, M. (2021), "Prediction of time-dependent bearing capacity of pile driven in cohesive soil using group method of data handling", Sharif J. Civil Eng., 37(3.2), 27-35.
  10. Camp III, W.M. and Parmar, H.S. (1999), "Characterization of pile capacity with time in the Cooper Marl: study of applicability of a past approach to predict long-term pile capacity", Transport. Res. Record, 1663(1), 16-24. https://doi.org/10.3141%2F1663-03. https://doi.org/10.3141%2F1663-03
  11. Dover, A.R. and Howard, J., Roger (2002), "High capacity pipe piles at san francisco international airport", Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance, Orlando, Florida.
  12. Fakharian, K. and Khanmohammadi, M.R. (2016), "Numerical modeling of pile installation effects on stress state in clay", Jpn. Geotech. Soc. Spec. Publication, 2(39), 1402-1406. 10.3208/jgssp.IRN-19.
  13. Fatehnia, M. and Amirinia, G. (2018), "A review of genetic programming and artificial neural network applications in pile foundations", Int. J. Geoeng., 9(1), 1-20. https://doi.org/10.1186/s40703-017-0067-6.
  14. Fattah, M.Y., Al-Mosawi, M.J. and Al-Zayadi, A.A. (2013), "Time dependent behavior of piled raft foundation in clayey soil", Geomech. Eng., 5(1), 17-36. https://doi.org/10.12989/gae.2013.5.1.017.
  15. Fellenius, B.H., Harris, D.E. and Anderson, D.G. (2004), "Static loading test on a 45 m long pipe pile in Sandpoint, Idaho", Can. Geotech. J., 41(4), 613-628. https://doi.org/10.1139/t04-012
  16. Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", arXiv preprint cs/0102027, https://arxiv.org/abs/cs/0102027.
  17. Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Comput. Ind., 635-653. https://doi.org/10.1007/978-1-4471-0123-9_54.
  18. Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R. and Nejad, F.M. (2011), "Nonlinear genetic-based models for prediction of flow number of asphalt mixtures", J. Mater. Civil Eng., 23(3), 248-263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000154.
  19. Gandomi, A.H., Tabatabaei, S.M., Moradian, M.H., Radfar, A. and Alavi, A.H. (2011), "A new prediction model for the load capacity of castellated steel beams", J. Constr. Steel Res., 67(7), 1096-1105. https://doi.org/10.1016/j.jcsr.2011.01.014.
  20. Gardner, M.W. and Dorling, S. (1998), "Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences", Atmosph. Environ., 32(14-15), 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0.
  21. Gong, W., Li, L., Zhang, S. and Li, J. (2020), "Long-term setup of a displacement pile in clay: An analytical framework", Ocean Eng., 218, 108143. https://doi.org/10.1016/j.oceaneng.2020.108143.
  22. Haque, M.N. and Abu-Farsakh, M.Y. (2019), "Development of analytical models to estimate the increase in pile capacity with time (pile setup) from soil properties", Acta Geotechnica, 14(3), 881-905. https://doi.org/10.1007/s11440-018-0654-5.
  23. Haque, M.N., Chen, Q., Abu-Farsakh, M. and Tsai, C. (2014), "Effects of pile size on set-up behavior of cohesive soils", Proceedings of the Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, Georgia.
  24. Haque, M.N. and Steward, E.J. (2020), "Evaluation of Pile Setup Phenomenon for Driven Piles in Alabama", Proceedings of the Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, Minneapolis, Minnesota.
  25. Harandizadeh, H. (2020), "Developing a new hybrid soft computing technique in predicting ultimate pile bearing capacity using cone penetration test data", AI EDAM, 34(1), 114-126. https://doi.org/10.1017/S0890060420000025.
  26. Harandizadeh, H., Armaghani, D.J. and Mohamad, E.T. (2020), "Development of fuzzy-GMDH model optimized by GSA to predict rock tensile strength based on experimental datasets", Neural Comput. Appl., 32, 14047-14067. https://doi.org/10.1007/s00521-020-04803-z.
  27. Harandizadeh, H., Toufigh, M.M. and Toufigh, V. (2019), "Application of improved ANFIS approaches to estimate bearing capacity of piles", Soft Comput., 23(19), 9537-9549. https://doi.org/10.1007/s00500-018-3517-y.
  28. Harandizadeh, H. and Toufigh, V. (2020), "Application of developed new artificial intelligence approaches in civil engineering for ultimate pile bearing capacity prediction in soil based on experimental datasets", Iranian J. Sci. Technol. T. Civil Eng., 44, 545-559. https://doi.org/10.1007/s40996-019-00332-5.
  29. Ivakhnenko, A. and Ivakhnenko, G. (1995), "The review of problems solvable by algorithms of the group method of data handling (GMDH)", Pattern Recognition And Image Analysis C/C Of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 5, 527-535.
  30. Jeon, J. and Rahman, M.S. (2007), "A neural network model for prediction of pile setup", Transport. Res. Record, 2004(1), 12-19. https://doi.org/10.3141%2F2004-02. https://doi.org/10.3141%2F2004-02
  31. Khanmohammadi, M., Armaghani, D.J. and Sabri Sabri, M.M. (2022), "Prediction and optimization of pile bearing capacity considering effects of time", Mathematics, 10(19), 3563.
  32. Khanmohammadi, M. and Fakharian, K. (2019), "Numerical modelling of pile installation and set-up effects on pile shaft capacity", Int. J. Geotech. Eng., 13, 484-498. https://doi.org/10.1080/19386362.2017.1368185.
  33. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., 14(1), 43-50.
  34. Khanmohammadi, M. and Fakharian, K. (2018), "Numerical simulation of soil stress state variations due to mini-pile penetration in clay", Int. J. Civil Eng., 16(4), 409-419. https://doi.org/10.1007/s40999-016-0141-z.
  35. Komurka, V.E. (2004), "Incorporating set-up and support cost distributions into driven pile design", Current Practices and Future Trends in Deep Foundations, Los Angeles, California.
  36. Komurka, V.E., Wagner, A.B. and Edil, T.B. (2003), "Estimating soil/pile set-up", Wisconsin Highway Research Program Madison, WI, USA.
  37. Koopialipoor, M., Nikouei, S.S., Marto, A., Fahimifar, A., Armaghani, D.J. and Mohamad, E.T. (2019), "Predicting tunnel boring machine performance through a new model based on the group method of data handling", Bull. Eng. Geol. Environ., 78(5), 3799-3813. https://doi.org/10.1007/s10064-018-1349-8.
  38. Li, D., Armaghani, D.J., Zhou, J., Lai, S.H. and Hasanipanah, M. (2020), "A GMDH predictive model to predict rock material strength using three non-destructive tests", J. Nondestruct. Eval., 39(4), 1-14. https://doi.org/10.1007/s10921-020-00725-x.
  39. Li, D., Moghaddam, M.R., Monjezi, M., Jahed Armaghani, D. and Mehrdanesh, A. (2020), "Development of a group method of data handling technique to forecast Iron ore price", Appl. Sci., 10(7), 2364-2384. https://doi.org/10.3390/app10072364.
  40. Mehra, R. (1977), "Group method of data handling (GMDH): review and experience", Proceedings of the 1977 IEEE conference on decision and control including the 16th symposium on adaptive processes and a special symposium on fuzzy set theory and applications.
  41. Ng, K. and Ksaibati, R. (2018), "Effect of soil layering on shorter-term pile setup", J. Geotech. Geoenviron. Eng. - ASCE, 144(5), 1-12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001873
  42. Ng, K.W., Roling, M., AbdelSalam, S.S., Suleiman, M.T. and Sritharan, S. (2013), "Pile setup in cohesive soil. I: experimental investigation", J. Geotech. Geoenviron. Eng., 139(2), 199-209. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000751.
  43. Pan, Y., Jiang, J., Wang, R., Cao, H. and Cui, Y. (2009), "A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine", J. Hazard. Mater., 168(2-3), 962-969. https://doi.org/10.1016/j.jhazmat.2009.02.122.
  44. Pham, T.A., Ly, H.B., Tran, V.Q., Giap, L.V., Vu, H.L.T. and Duong, H.A.T. (2020), "Prediction of pile axial bearing capacity using artificial neural network and random forest", Appl. Sci., 10(5), 1871-1892. https://doi.org/10.3390/app10051871.
  45. Randolph, M.F., Carter, J. and Wroth, C. (1979), "Driven piles in clay-the effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361.
  46. Razavi, M., Dehghani, A. and Khanmohammadi, M. (2009), "Simulation of thermal stratification in cisterns using artificial neural networks", J. Energ. Heat Mass Transf., 31, 201-210.
  47. Razavi, S., Goshtasbi, K., Noorzad, A. and Ahangari, K. (2018), "Proposing new relationships to estimate the pressuremeter modulus of cohesive and cohesionless media", Innov. Infrastruct. Solutions, 3(1), 67-78. https://doi.org/10.1007/s41062-018-0172-1.
  48. Samson, L. and Authier, J. (1986), "Change in pile capacity with time: case histories", Can. Geotech. J., 23(2), 174-180. https://doi.org/10.1139/t86-027.
  49. Skov, R. and Denver, H. (1988), "Time-dependence of bearing capacity of piles", Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles. , Ottawa.
  50. Smith, G.N. (1986), "Probability and statistics in civil engineering", Collins professional and technical books, 244. https://ci.nii.ac.jp/naid/10007808566/.
  51. Svinkin, M.R. (1996), "Setup and relaxation in glacial sand-discussion", J. Geotech. Eng. - ASCE, 122(4), 319-321. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(319.2)
  52. Svinkin, M.R. (2002), "Engineering judgement in determination of pile capacity by dynamic methods", Proceedings of the Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance, Virginia, USA.
  53. Svinkin, M.R., Morgano, C.M. and Morvant, M. (1994), "Pile capacity as a function of time in clayey and sandy soils", Proceedings of the Deep Foundations Institute Fifth International Conference and Exhibition on Piling and Deep Foundations, Bruges, Belgium.
  54. Svinkin, M.R. and Skov, R. (2000), "Set-up effect of cohesive soils in pile capacity", Proceedings of the 6th international conference on application of stress waves to piles, Florid, USA.
  55. Tarawneh, B. (2013), "Pipe pile setup: database and prediction model using artificial neural network", Soils Found., 53(4), 607-615. https://doi.org/10.1016/j.sandf.2013.06.011
  56. Tarawneh, B. (2018), "Gene expression programming model to predict driven pipe piles set-up", Int. J. Geotech. Eng., 14(538-544. https://doi.org/10.1080/19386362.2018.1460964.
  57. Tarawneh, B. and Imam, R. (2014), "Regression versus artificial neural networks: predicting pile setup from empirical data", KSCE J. Civil Eng., 18, 1018-1027. https://doi.org/10.1007/s12205-014-0072-7
  58. Titi, H.H. and Wije Wathugala, G. (1999), "Numerical procedure for predicting pile capacity-setup/freeze", Transport. Res. Record, 1663(1), 25-32. https://doi.org/10.3141%2F1663-04. https://doi.org/10.3141%2F1663-04
  59. Wang, J.X. (2017), "Growth-rate-dependent prediction of pile setup and its application in driven pile foundation construction", Geomech. Geoeng., 12(2), 86-106. https://doi.org/10.1080/17486025.2016.1177208.
  60. Xie, Y. (2011), Observed tip resistance at EOD & BOR using bottom tip gages for driven piles, University of Florida.