DOI QR코드

DOI QR Code

One-step phyto-mediated fabrication of silver nanoparticles and its anti-microbial properties

  • Velmurugan Palanivel (Centre for Research Bharath Institute of Higher Education and Research) ;
  • Sung-Chul Hong (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University) ;
  • Veera Ravi Arumugam (Centre for Research Bharath Institute of Higher Education and Research) ;
  • Sivakumar Subpiramaniyam (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University) ;
  • Pyong-In Yi (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University) ;
  • Seong-Ho Jang (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University) ;
  • Jeong-Min Suh (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University) ;
  • Eun-Sang Jung (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University) ;
  • Je-Sung Park (Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University)
  • 투고 : 2022.04.12
  • 심사 : 2023.02.02
  • 발행 : 2023.04.25

초록

This manuscript describes the one-step eco-friendly green fabrication of silver nanoparticles (AgNPs) through the in-situ bio-reduction of an aqueous solution of silver nitrate using Syzygium aromaticum leaf extract. UV-vis spectroscopy shows a characteristic SPR peak around 442 nm. FTIR spectroscopy showed that the AgNPs were capped with bioactive phyto-molecules. TEM images revealed oval and spherical particles with a mean diameter of ~12.6 nm. XRD analysis revealed crystalline and face-cantered cubic AgNPs. The phytosynthesized AgNPs showed broad-spectrum anti-microbial activity against two foodborne pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The AgNPs showed a prominent ability to inhibit biofilms formed by L. monocytogenes and S. aureus in laboratory conditions through a crystal violet assay. The results suggest that the AgNPs could be a novel nanotool to develop effective antimicrobial and anti-biofilm agents in food preservation.

키워드

과제정보

This work was supported by a 2-Year Research Grant of Pusan National University.

참고문헌

  1. Abdel-Aziz, M.S., Shaheen, M.S., El-Nekeety, A.A. and AbdelWahhab, M.A. (2014), "Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract", J. Saudi. Chem. Soc., 18, 356-363. https://doi.org/10.1016/j.jscs.2013.09.011.
  2. Attarilar, S., Yang, J., Ebrahimi, M., Wang, Q., Liu, J., Tang, Y. and Yang, J. (2020), "The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: A brief review from the biomedical perspective", Front. Bioeng. Biotechnol., 8, 822. https://doi.org/10.3389/fbioe.2020.00822.
  3. Barabadi, H., Hosseini, O., Damavandi Kamali, K., Jazayeri Shoushtari, F., Rashedi, M., Haghi-Aminjan, H. and Saravanan, M. (2020a), "Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review", J. Clust. Sci, 31, 1-10. https://doi.org/10.1007/s10876-019-01639-z.
  4. Barabadi, H., Vahidi, H., Rashedi, M., Mahjoub, M.A., Nanda, A. and Saravanan, M. (2020b), "Recent advances in biological mediated cancer research using silver nanoparticles as a promising strategy for hepatic cancer therapeutics: a systematic review", Nanomed. J, 7(4), 251-262. https://doi.org/10.22038/nmj.2020.07.00001.
  5. Barabadi, H., Vahidi, H., Damavandi Kamali, K., Rashedi, M. and Saravanan, M. (2020c), "Antineoplastic biogenic silver nanomaterials to combat cervical cancer: a novel approach in cancer therapeutics", J. Clust. Sci, 31(4), 659-672. https://doi.org/10.1007/s10876-019-01697-3.
  6. Barabadi, H., Webster, T.J., Vahidi, H., Sabori, H., Kamali, K.D., Shoushtari, F.J., Mahjoub, M.A., Rashedi, M., Mostafavi, E., Cruz, D.M. and Hosseini, O. (2020d), "Green nanotechnologybased gold nanomaterials for hepatic cancer therapeutics: a systematic review", Iran. J. Pharm. Res, 19(3), 3. https://doi.org/10.22037/ijpr.2020.113820.14504.
  7. Barabadi, H., Mojab, F., Vahidi, H., Marashi, B., Talank, N., Hosseini, O. and Saravanan, M. (2021), "Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles", Inorg. Chem. Commun, 129, 108647. https://doi.org/10.22037/ijpr.2020.113820.14504.
  8. Barabadi, H., Jounaki, K., Pishgahzadeh, E., Morad, H., Sadeghian-Abadi, S., Vahidi, H. and Hussain, C.M. (2022a), Handbook of Microbial Nanotechnology, Academic Press, USA. https://doi.org/10.1016/B978-0-12-823426-6.00030-9.
  9. Barabadi, H., Mohammadzadeh, A., Vahidi, H., Rashedi, M., Saravanan, M., Talank, N. and Alizadeh, A. (2022b), "Penicillium chrysogenum-derived silver nanoparticles: Exploration of their antibacterial and biofilm inhibitory activity against the standard and pathogenic Acinetobacter baumannii compared to tetracycline", J. Clust. Sci., 33(5), 1929-1942. https://doi.org/10.1007/s10876-021-02121-5.
  10. Balaz, M., Balazova, L., Kovacova, M., Daneu, N., Salayova, A. and Bedlovicova, Z. (2019), "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano. Res, 7(2), 125-134. https://doi.org/10.12989/anr.2019.7.2.125.
  11. Burdusel, A.C., Gherasim, O., Grumezescu, A.M., Mogoanta, L., Ficai, A. and Andronescu, E. (2018), "Biomedical applications of silver nanoparticles: An up-to-date overview", Nanomaterials, 8(9), 681. https://doi.org/10.3390/nano8090681.
  12. Chugh, D., Viswamalya, V.S. and Das, B. (2021), "Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process", J. Genet. Eng. Biotechnol, 19(1), 1-21. https://doi.org/10.1186/s43141-021-00228-w.
  13. Dahl, J.A., Maddux, B.L.S. and Hutchison, J.E. (2007), "Toward greener nanosynthesis", Chem. Rev, 107, 2228-2269 https://doi.org/10.1021/cr050943k.
  14. Das, R.K., Pachapur, V.L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., Dalila, L.M.A., Sarma, S.J. and Brar, S.K. (2017), "Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects", Nanotechnol. Environ. Eng, 2, 18. https://doi.org/10.1007/s41204-017-0029-4.
  15. Dash, S.S., Majumdar, R., Sikder, A.K., Bag, B.G. and Patra, B.K. (2014), "Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction", Appl. Nanosci, 4, 485-490. https://doi.org/10.1007/s13204-013-0223-z.
  16. Ferdous, Z. and Nemmar, A. (2020), "Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure", Int. J. Molecul. Sci, 21(7), 2375. https://doi.org/10.3390/ijms21072375.
  17. Gaafar, M.R., Mady, R.F., Diab, R.G. and Shalaby, T.I. (2014), "Chitosan and silver nanoparticles: promising anti-toxoplasma agents", Exp. Parasitol, 143, 30-38. https://doi.org/10.1016/j.exppara.2014.05.005.
  18. Gao, H., Yang, H. and Wang, C. (2017), "Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil", Results Phys., 7, 3130-3136. https://doi.org/10.1016/j.rinp.2017.08.032.
  19. Gomathi, M., Prakasam, A., Rajkumar, P.V., Rajeshkumar, S., Chandrasekaran, R. and Anbarasan, P.M. (2020), "Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity", South African J. Chem. Eng., 32, 1-4. https://doi.org/10.1016/j.sajce.2019.11.005.
  20. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D. and Baffa, O. (2011), "Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis", Spectrochim Acta Part A Mol. Biomol. Spectrosc., 82, 140-145. https://doi.org/10.1016/j.saa.2011.07.024.
  21. Gupta, K., Hazarika, S.N., Saikia, D., Namsa, N.D. and Mandal, M. (2014), "One step green synthesis and anti-microbial and anti-biofilm properties of Psidium guajava L. leaf extractmediated silver nanoparticles", Mater. Lett., 125, 67-70. https://doi.org/10.1016/j.matlet.2014.03.134.
  22. Hirsch, T., Zharnikov, M., Shaporenko, A., Stahl, J.,. Weiss, D., Weiss, D., Wolfbeis, O.S. and Mirsky, V.M. (2005), "Sizecontrolled electrochemical synthesis of metal nanoparticles on monomolecular templates", Angew Chemie Int. Ed., 44, 6775-6778. https://doi.org/10.1002/anie.200500912.
  23. Honary, S., Gharaei-Fathabad, E., Barabadi, H. and Naghibi, F. (2013), "Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis", J. Nanosci. Nanotechnol, 13(2), 1427-1430. https://doi.org/10.1166/jnn.2013.5989.
  24. Iravani, S. and Varma, R.S. (2020), "Bacteria in heavy metal remediation and nanoparticle biosynthesis", ACS Sustain. Chem. Eng, 8(14), 5395-5409. https://doi.org/10.1021/acssuschemeng.0c00292.
  25. Javed, R., Zia, M., Naz, S., Aisida, S.O., Ain, N.U. and Ao, Q. (2020), "Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects", J. Nanobiotechnol, 18, 1-15. https://doi.org/10.1186/s12951-020-00704-4.
  26. Kaur, H., Kaur, S. and Singh, M. (2013), "Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity", Biol., 68, 1048-1053. https://doi.org/10.2478/s11756-013-0276-1.
  27. Kouvaris, P., Delimitis, A., Zaspalis, V., Papadppoulos, D., Tsipas, S.A. and Michailidis, N. (2012), "Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract", Mater. Lett., 76, 18-20. https://doi.org/10.1016/j.matlet.2012.02.025.
  28. Kumar, S., Lather, V. and Pandita, D. (2015), "Green synthesis of therapeutic nanoparticles: An expanding horizon", Nanomedicine, 10(15), 2451-2471. DOI: 10.2217/nnm.15.112.
  29. Liu, Y., Jiang, Y., Zhu, J., Huang, J., Huang, J. and Zhang, H. (2019), "Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa", Carbohydr. Polym., 206, 412-419. https://doi.org/10.1016/j.carbpol.2018.11.015.
  30. Loo, Y.Y., Rukayadi, Y., Nor-Khaizura, M.A.R., Kuan, C.H., Chieng, B.W., Nishibuchi, M. and Radu, S. (2018), "In Vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens", Front Microbiol., 9. https://doi.org/10.3389/fmicb.2018.01555.
  31. Morais, M.G.D., Martins, V.G., Steffens, D., Pranke, P. and da Costa, J.A.V. (2014), "Biological applications of nanobiotechnology", J. Nanosci. Nanotechnol, 14(1), 1007-1017. https://doi.org/10.1166/jnn.2014.8748.
  32. Mostafavi, E., Zarepour, A., Barabadi, H., Zarrabi, A., Truong, L.B. and Medina-Cruz, D. (2022), "Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic", Biotechnol. Rep, 34, 00714. https://doi.org/10.1016/j.btre.2022.e00714.
  33. Mahendra Rai, M.R., Alka Yadav, A.Y., Bridge, P. and Aniket Gade, A.G. (2009), "Myconanotechnology: a new and emerging science", Appl. Mycol, 258-267. https://doi.org/10.1079/9781845935344.0258.
  34. Prasad, T.N.V.K.V., Subba Rao Kambala, V. and Naidu, R. (2011), "A Critical Review on Biogenic Silver Nanoparticles and their Antimicrobial Activity", Curr. Nanosci., 7, 531-544. https://doi.org/10.2174/157341311796196736.
  35. Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R. and Srinivasan, P. (2013), "Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15", Process Biochem, 48, 317-324. https://doi.org/10.1016/j.procbio.2012.12.013.
  36. Saravanan, M., Barabadi, H. and Vahidi, H. (2021a), "Green nanotechnology: Isolation of bioactive molecules and modified approach of biosynthesis", Biogen. Nanopart. Cancer Theranost., 101-122. https://doi.org/10.1016/B978-0-12-821467-1.00005-7.
  37. Saravanan, M., Barabadi, H., Vahidi, H., Webster, T.J., MedinaCruz, D., Mostafavi, E., Vernet Crua, A., Cholula-Diaz, J.L. and Periakaruppan, P. (2021b), Emerging Theranostic Silver and Gold Nanobiomaterials for Breast Cancer: Present Status and Future Prospects in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, Elesvier.
  38. Salem, W.M., Haridy, M., Sayed, W.F. and Hassan, N.H. (2014), "Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus", Ind. Crops. Prod., 62, 228-234. https://doi.org/10.1016/j.indcrop.2014.08.030.
  39. Shanker, K., Mohan, G.K., Hussain, M.A., Jayarambabu, N. and Pravallika, P.L. (2017), "Green biosynthesis, characterization, in vitro antidiabetic activity, and investigational acute toxicity studies of some herbal-mediated silver nanoparticles on animal models", Pharmacognosy Magazine, 13(49), 188. https://doi.org/10.4103/0973-1296.197642.
  40. Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G. and Sundaramanickam, A. (2014), "Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens", Appl. Nanosci., 4, 881-888. https://doi.org/10.1007/s13204-013-0271-4.
  41. Sharma, D., Kanchi, S. and Bisetty, K. (2019), "Biogenic synthesis of nanoparticles: A review", Arab. J. Chem., 12, 3576-3600. https://doi.org/10.1016/j.arabjc.2015.11.002.
  42. Sharma, G., Nam, J.S., Sharma, A.R. and Lee, S.S. (2018), "Antimicrobial potential of silver nanoparticles synthesized using medicinal herb coptidis rhizome", Molecules, 23. https://doi.org/10.3390/molecules23092268.
  43. Shetty, P., Supraja, N., Garud, M. and Prasad, T.N.V.K.V. (2014), "Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles", J. Nanostruct. Chem., 4, 161-170. https://doi.org/10.1007/s40097-014-0132-z.
  44. Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., and Kumar, P. (2018), ""Green" synthesis of metals and their oxide nanoparticles: Applications for environmental remediation", J. Nanobiotechnol., 16, 84. https://doi.org/10.1186/s12951-018-0408-4.
  45. Sivakumar, P., Nethradevi, C. and Renganathan, S. (2012), "Synthesis of silver nanoparticles using Lantana camara fruit extract and its effect on pathogens", Asian J. Pharm. Clin. Res., 5, 97-101.
  46. Sulaiman, G.M., Mohammed, W.H., Marzoog TR, Al-Amiery, A.A.A., Kadhum, A.A.H. and Mohamad, A.B. (2013), "Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract", Asian Pac. J. Trop. Biomed., 3, 58-63. https://doi.org/10.1016/S2221-1691(13)60024-6.
  47. Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017), "Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation", Adv. Nano. Res., 5(4), 373-392. https://doi.org/10.12989/anr.2017.5.4.373.
  48. Supraja, N., Dhivya, J., Prasad, T.N.V.K.V. and David, E. (2018), Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line", Adv. Nano. Res., 6(2), 183-200. https://doi.org/10.12989/anr.2018.6.2.183.
  49. Traiwatcharanon, P., Timsorn, K. and Wongchoosuk, C. (2017), "Flexible room-temperature resistive humidity sensor based on silver nanoparticles", Mater. Res. Express., 4. https://doi.org/10.1088/2053-1591/aa85b6.
  50. Tremi, I., Spyratou, E., Souli, M., Efstathopoulos, E.P., Makropoulou, M., Georgakilas, A.G. and Sihver, L. (2021), "Requirements for designing an effective metallic nanoparticle (NP)-boosted radiation therapy (RT)", Cancers, 13(13), 3185. https://doi.org/10.3390/cancers 13133 185.
  51. Talank, N., Morad, H., Barabadi, H., Mojab, F., Amidi, S., Kobarfard, F., Mahjoub, M.A., Jounaki, K., Mohammadi, N., Salehi, G. and Ashrafizadeh, M. (2022), "Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance", Talanta, 243, 123374. https://doi.org/10.1016/j.talanta.2022.123374.
  52. Taha, R.H. (2022), "Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; A review", Inorg. Chem. Commun, 143, 109610. https://doi.org/10.1016/j.inoche.2022.109610.
  53. Truong, L.B., Cruz, D.M., Barabadi, H., Vahidi, H. and Mostafavi, E. (2022), Cancer therapeutics with microbial nanotechnologybased approaches in Handbook of Microbial Nanotechnology, Academic Press.
  54. Velmurugan, P, Cho, M., Lee, S.M., Park, J.H., Lee, K.J., Myung, H. and Oh, B.T. (2016), "Phytocrystallization of silver and gold by Erigeron annuus (L.) Pers flower extract and catalytic potential of synthesized and commercial nano silver immobilized on sodium alginate hydrogel", J. Saudi Chem. Soc., 20(3), 313-320. https://doi.org/10.1016/j.jscs.2014.09.004.
  55. Velmurugan, P., Cho, M.K, Lim, S.S., Seo, S.K., Myung, H., Bang, K.S., Sivakumar, S., Cho, K. and Oh B.T. (2015), "Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity", Mater. Lett., 138, 272-275. https://doi.org/10.1016/j.matlet.2014.09.136.
  56. Varadharaj, V., Ramaswamy, A., Sakthivel, R., Subbaiya, R., Barabadi, H., Chandrasekaran, M. and Saravanan, M. (2020), "Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: an in vitro study", J. Clust. Sci, 31, 1257-1266. https://doi.org/10.1007/s10876-019-01732-3.
  57. Yosri, N., Khalifa, S.A., Guo, Z., Xu, B., Zou, X. and El-Seedi, H.R. (2021), "Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications", Int. J. Biol. Macromol, 193, 1767-1798. https://doi.org/10.1016/j.ijbiomac.2021.10.229.