DOI QR코드

DOI QR Code

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung (National Economics University (NEU)) ;
  • Dinh Tran Ngoc Huy (Banking university HCMC Ho Chi Minh city Vietnam- International University of Japan) ;
  • Dmitry Olegovich Bokov (Institute of Pharmacy, Sechenov First Moscow State Medical University, Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety) ;
  • Maria Jade Catalan Opulencia (College of Business Administration, Ajman University) ;
  • Fahad Alsaikhan (Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University) ;
  • Irfan Ahmad (Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University) ;
  • Guljakhan Karlibaeva (Department of Physics Teaching Methods, Tashkent State Pedagogical University)
  • Received : 2021.11.02
  • Accepted : 2022.11.17
  • Published : 2023.04.25

Abstract

A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.

Keywords

Acknowledgement

The authors are grateful to Scientific Research Deanship at King Khalid University, Abha, Saudi Arabia for their financial support through the Large Research Group Project under grant number (RGP.02-230-43).

References

  1. Abdallah, S., Fan, M. and Rees, D.W. (2018), "Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview", J. Mater. Civil Eng., 30(3), 04018001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002154.
  2. Aghajanian, A., Thomas, C. and Behfarnia, K. (2021), "Effect of micro-silica addition into electric arc furnace steel slag eco-efficient concrete", Appl. Sci., 11(11), 4893. https://doi.org/10.3390/app11114893.
  3. Aghakhani, M. and Naderian, P. (2015), "Modeling and optimization of dilution in SAW in the presence of Cr2O3 nano-particles", Int. J. Adv. Manuf. Technol., 78(9), 1665-1676. https://doi.org/10.1007/s00170-014-6733-3.
  4. Baniya, H.B., Guragain, R.P., and Subedi, D.P. (2021), "Cold atmospheric pressure plasma technology for modifying polymers to enhance adhesion: A critical review", Rev. Adhes. Adhes., 9(2), 269-307. https://doi.org/10.7569/RAA.2021.097306.
  5. Dahi Taleghani, A., Ahmadi, M. and Olson, J.E. (2013), "Secondary fractures and their potential impacts on hydraulic fractures efficiency", Proceedings of the ISRM International Conference for Effective and Sustainable Hydraulic Fracturing, OnePetro. https://doi.org/10.5772/56360.
  6. Dhiman, N.K., Sidhu N., Agnihotri S., Mukherjee A. and Reddy M.S. (2022), "Role of nanomaterials in protecting building materials from degradation and deterioration", Biodegr. Biodeterior. Nanosc., 5, 405-475 . https://doi.org/10.1016/B978-0-12-823970-4.00024-5.
  7. Ding, X., Geng, H., Zhao, M., Chen, Z. and Li, J. (2021), "Synergistic bond properties of different deformed steel fibers embedded in mortars wet-sieved from self-compacting SFRC", Appl. Sci., 11(21), 10144. https://doi.org/10.3390/app112110144.
  8. Dmytro, S. (2020), "The study of welding requirements during construction and installation of seismic-resistant steel structures", J. Res. Sci. Eng. Technol., 8(2), 17-20. https://doi.org/10.24200/jrset.vol8iss2pp17-20
  9. Du, J., Meng, W., Khayat, K.H., Bao, Y., Guo, P., Lyu, Z. and Wang, H. (2021), "New development of ultra-high-performance concrete (UHPC)", Compos. Part B Eng., 224, 109220. https://doi.org/10.1016/j.compositesb.2021.109220.
  10. Ebrahimi, F., and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., 5(2), 69. https://doi.org/10.12989/anr.2017.5.2.069.
  11. Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F. K. and Maleki, V. A. (2021), "Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete", Constr. Build. Mater., 271, 121531. https://doi.org/10.1016/j.conbuildmat.2020.121531.
  12. Esmaeili, J. and K. Andalibi (2019), "Development of 3D MesoScale finite element model to study the mechanical behavior of steel microfiber-reinforced polymer concrete", Comput. Concr., 24(5), 413-422 . https://doi.org/10.12989/cac.2019.24.5.413.
  13. Graybeal, B.A. (2008), "Flexural behavior of an ultrahighperformance concrete I-girder", J. Bridge Eng., 13(6), 602-610. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(602).
  14. Jarach, N., Zuckerman, R., Naveh, N., Dodiuk, H., and Kenig, S. (2021), "Bio-and water-based reversible covalent bonds containing polymers (vitrimers) and their relevance to adhesives", Rev. Adhes. Adhes., 9(1). https://doi.org/10.7569/RAA.2021.097302.
  15. Kaloop, M.R., Abd Elrahman, M. and Hu, J.W. (2022), "Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review," Adv. Nano Res., 12(1), 1-23. https://doi.org/10.12989/anr.2022.12.1.001.
  16. Kim, J.J., Yoo, D.Y. and Banthia, N. (2021), "Benefits of curvilinear straight steel fibers on the rate-dependent pullout resistance of ultra-high-performance concrete", Cement Concr. Compos., 118, 103965. https://doi.org/10.1016/j.cemconcomp.2021.103965.
  17. Lee, S.J., Eom, A.H., Ryu, S.J. and Won, J.P. (2016), "Optimal dimension of arch-type steel fibre-reinforced cementitious composite for shotcrete", Compos. Struct., 152, 600-606. https://doi.org/10.1016/j.compstruct.2016.05.099.
  18. Rajeshkumar, S., Subramanian, A.K. and Prabhakar, R., (2021), "In vitro Anti-inflammatory activity of Silymarin/Hydroxyapatite/Chitosan Nanocomposites and its cytotoxic effect using Brine shrimp lethality assay: Nanocomposite for biomedical applications", J. Popul. Therapeut. Clin. Pharmacol., 28(2). https://doi.org/10.47750/jptcp.2022.874.
  19. Maleki, F.K., Nasution, M.K., Gok, M.S. and Maleki, V.A. (2022), "An experimental investigation on mechanical properties of Fe2O3 microparticles reinforced polypropylene", J. Mater. Res. Technol., 16, 229-237. https://doi.org/10.1016/j.jmrt.2021.11.104.
  20. Ming, M., Zheng, S., Zhang, Y., Zheng, Y., Yang, S. and Song, M. (2021), "Experimental study on the bond-slip behavior and stress transfer mechanism between shaped steel and highperformance fiber-reinforced concrete", Structures, 34, 5013- 5028. https://doi.org/10.1016/j.istruc.2021.09.014.
  21. Mussig, J. and Graupner, N. (2021), "Test methods for fibre/matrix adhesion in cellulose fibre-reinforced thermoplastic composite materials: A critical review", Rev. Adhes. Adhes., 8(2), 68-129. https://doi.org/10.7569/RAA.2020.097306.
  22. Naderi, S. and Zhang, M. (2022), "3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete", Compos. Struct., 291, 115690. https://doi.org/10.1016/j.compstruct.2022.115690.
  23. Parashar, A.K. and Gupta, A. (2021), "Investigation of the effect of bagasse ash, hooked steel fibers and glass fibers on the mechanical properties of concrete", Mater. Today Proceedings, 44, 801-807. https://doi.org/10.1016/j.matpr.2020.10.711.
  24. Poveda, E., Yu, R.C., Tarifa, M., Ruiz, G., Cunha, V.M. and Barros, J.A. (2020), "Rate effect in inclined fibre pull-out for smooth and hooked-end fibres: A numerical study", Int. J. Fract., 223(1), 135-149. https://doi.org/10.1007/s10704-019-00404-7.
  25. Qi, J., Wu, Z., Ma, Z.J. and Wang, J. (2018), "Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles", Constr. Build. Mater., 191, 764-774. https://doi.org/10.1016/j.conbuildmat.2018.10.067.
  26. Rezaee, M. and Maleki, V.A. (2015), "An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(4), 644-650. https://doi.org/10.1177/0954406214538011.
  27. Riahi, S., Nemati, A., Khodabandeh, A.R. and Baghshahi, S. (2021), "Investigation of interfacial and mechanical properties of alumina-coated steel fiber reinforced geopolymer composites", Constr. Build. Mater., 288, 123118. https://doi.org/10.1016/j.conbuildmat.2021.123118.
  28. Sharma, R., Jang, J.G. and Bansal, P.P. (2022), "A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete", J. Build. Eng., 45, 103314. https://doi.org/10.1016/j.jobe.2021.103314.
  29. Shekhovtsova, S. and Korolev E. (2022), "Interfacial phenomena at the interface in the system «carbon primary materials-water solutions of surfactants» for cement materials", Materials, 15(2), 556-587 . https://doi.org/10.3390/ma15020556.
  30. Sher, F., Hazafa A., Rashid T., Bilal M., Zafar F., Mushtaq Z. and Nisa Z.U. (2022), "Effects of zeolite-based nanoparticles on the biodegradation of organic materials", Biodegr. Biodeter. Nanosc., 134, 579-601. https://doi.org/10.1016/B978-0-12-823970-4.00021-X.
  31. Schmidt, M., and Fehling, E. (2005), "Ultra-high-performance concrete: Research, development and application in Europe", ACI Spec. Publ, 228(4), 51-78. https://doi.org/10.14359/14460.
  32. Tai, Y.S., Kim, J.J., Yoo, D.Y. (2020), "Spacing and bundling effects on rate-dependent pullout behavior of various steel fibers embedded in ultra-high-performance concrete", Arch. Civil Mech. Eng., 20(2), 1-18. https://doi.org/10.1007/s43452-020-00048-8.
  33. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581.
  34. Wille, K., Naaman, A.E., El-Tawil, S. and Parra-Montesinos, G.J. (2012), "Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing", Mater. Struct., 45(3), 309-324. https://doi.org/10.1617/s11527-011-9767-0.
  35. Won, J.P., Lee, J.H. and Lee, S.J. (2015), "Flexural behaviour of arch-type steel fibre reinforced cementitious composites", Compos. Struct., 134, 565-571. https://doi.org/10.1016/j.compstruct.2015.08.092.
  36. Yang, L., Caijun S. and Zemei, W. (2019), "Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete-A review", Compos. Part B Eng., 178, 107456. https://doi.org/10.1016/j.compositesb.2019.107456.
  37. Zerrouki, R., Karas, A., and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211.