DOI QR코드

DOI QR Code

Highly catalysis Zinc MOF-loaded nanogold coupled with aptamer to assay trace carbendazim by SERS

  • Jinling Shi (Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education) ;
  • Jingjing Li (Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education) ;
  • Aihui Liang (Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education) ;
  • Zhiliang Jiang (Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education)
  • 투고 : 2021.11.02
  • 심사 : 2022.11.17
  • 발행 : 2023.04.25

초록

Zinc metal organic framework (MOFZn)-loaded goad nanoparticles (AuNPs) sol (Au@MOFZn), which was characterized by TEM, Mapping, FTIR, XRD, and molecular spectrum, was prepared conveniently by solvothermal method. The results indicated that Au@MOFZn had a very strong catalytic effect with the nanoreaction of AuNPs formation between sodium oxalate (SO) and HAuCl4. AuNPs in the new indicator reaction had a strong resonance Rayleigh scattering (RRS) signal at 370 nm. The indicator AuNPs generated by this reaction, which had the most intense surface enhanced Raman scattering (SERS) peak at 1621 cm -1. The new SERS/RRS indicator reaction in combination with specific aptamer (Apt) to fabricate a sensitive and selective Au@MOFZn catalytic amplification-aptamer SERS/RRS assay platform for carbendazim (CBZ), with SERS/RRS linear range of 0.025-0.5 ng/mL. The detection limit was 0.02 ng/mL. Similarly, this assay platform has been also utilized to detect oxytetracycline (OTC) and profenofos (PF).

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China. (No. 21767004)

참고문헌

  1. Alanazi, F., Almugbel, R., Maher, H.M., Alodaib, F.M. and Alzoman, N.Z. (2021) "Determination of tetracycline, oxytetracycline and chlortetracycline residues in seafood products of Saudi Arabia using high performance liquid chromatography-Photo diode array detection", Saudi Pharm. J., 29(6), 566-575. https://doi.org/10.1016/j.jsps.2021.04.017.
  2. Ali, M., Esmaeil, H.B., Mohammad, M.F. and Marziyeh, M. (2022), "Electrochemical aptasensor for ultrasensitive detection of PCB77 using thionine-functionalized MoS2-rGO nano-hybrid", Microchem. J., 155, 104747. https://doi.org/10.1016/j.microc.2020.104747.
  3. Anshul, Y., Raj Vardhan, P., Bipin, G.V., Pawan, K.L. and Vinod, K.S. "Recovery of CaSO4 and NaCl from sub-soil brine using CNT@MOF5 incorporated poly(vinylidene fluoridehexafluoropropylene) membranes via vacuum-assisted distillation", Colloid. Surfaces A., 645, 128918. https://doi.org/10.1016/j.colsurfa.2022.128918.
  4. Bahreyni, A., Luo, H.L., Ramezani, M., Alibolandi, M., Soheili, V., Danesh, N.M., Ashjaei, M.S., Abnous, K. and Taghdisi, S.M. (2020), "A fluorescent sensing strategy for ultrasensitive detection of oxytetracycline in milk based on aptamer-magnetic bead conjugate, complementary strand of aptamer and PicoGreen", Spectrochimica Acta A, 246, 119009. https://doi.org/10.1016/j.saa.2020.119009.
  5. Deng, H.M., Cai, X.J., Ji, Y., Yan, D., Yang, F., Liu, S.S., Deji, Z.M., Wang, Y., Bian, Z.Y., Tang, G.L., Fan, Z.Y. and Huang, Z.Z. (2022), "Development of a lateral flow immunoassay for rapid quantitation of carbendazim in agricultural products", Microchem. J., 10, 107495. https://doi.org/10.1016/j.microc.2022.107495.
  6. Dong, W.F., Yang, L.Y. and Huang, Y.M. (2017), "Glycine postsynthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing", Talanta, 167, 359-366. https://doi.org/10.1016/j.talanta.2017.02.039.
  7. Gaurang, M.P., Jigneshkumar, V.R., Singhal, R.K. and Kailasa, S.K. (2015), "Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor", Sensor. Actuat. B Chem., 206, 684-691. https://doi.org/10.1016/j.snb.2014.09.095.
  8. Gheitaran, R., Afkhami, A. and Madrakian, T. (2022), "PVPcoated silver nanocubes as RRS probe for sensitive determination of Haloperidol in real samples", Spectrochimica Acta A, 272, 121025. https://doi.org/10.1016/j.saa.2022.121025.
  9. Ghorbani, A., Ojani, R., Ganjali, M.R. and Raoof, J. (2021), "Direct voltammetric determination of carbendazim by utilizing a nanosized imprinted polymer/MWCNTs-modified electrode", J. Iran. Chem. Soc., 18, 3109-3118. https://doi.org/10.1007/S13738-021-02255-3.
  10. Guselnikova, O., Postnikov, P., Elashnikov, R., Miliutina, E., Svorcik, V., Lyutakov, O. (2019), "Metal-organic framework (MOF-5) coated SERS active gold gratings: A platform for the selective detection of organic contaminants in soil", Analytica Chimica Acta, 1068, 70-79. https://doi.org/10.1016/j.aca.2019.03.058.
  11. Harrison, D.L., Patrick, S.W. and Christina, C. (2021), "Metalorganic frameworks for drug delivery: A design perspective", ACS Appl. Mater. Interf., 13(6), 7004-7020. https://doi.org/10.1021/acsami.1c01089.
  12. Li, C.M., Huang, J.P., Zhu, H.L., Liu, L.L., Feng, Y.M., Hu, G. and Yu, X.B. (2017), "Dual-emitting fluorescence of Eu/Zr-MOF for ratiomeric sensing formaldehyde", Sensor. Actuat. B Chem., 253, 275-282. https://doi.org/10.1016/j.snb.2017.06.064.
  13. Li, R.Y., Jiang, Y.H., Wang, Q.S., Yang, Y.Q., Li, N.N., Sun, X.L. and Li, Z.J. (2021), "Serine, and histidine-functionalized graphene quantum dot with unique double fluorescence emission as a fluorescent probe for highly sensitive detection of carbendazim", Sensor. Actuat. B Chem., 343, 130099-130108. https://doi.org/10.1016/J.SNB.2021.130099.
  14. Liang, A.H., Zhi, S.F., Liu, Q.W., Li, C.N. and Jiang, Z.L. (2021), "A new covalent organic framework of dicyandiamidebenzaldehyde nanocatalytic amplification SERS/RRS aptamer assay for ultratrace oxytetracycline with the nanogold indicator reaction of polyethylene glycol 600", Biosensors, 11, 458-458. https://doi.org/10.3390/BIOS11110458.
  15. Ma, C.H., Zhang, J., Hong, Y.C., Wang, Y.R. and Chen, X. (2015), "Determination of carbendazim in tea using surface enhanced Raman spectroscopy", Chinese Chem. Lett., 26, 1455-1459. https://doi.org/10.1016/j.cclet.2015.10.015.
  16. Sakda, J., Jirachaya, P., Weena, S., Nanthika, K., Nattaya, N., Orawon, C. and Sudkate, C. (2020), "'Signal-On' electrochemical biosensor based on a competitive immunoassay format for the sensitive determination of oxytetracycline", Sensor. Actuat. B Chem., 320, 128389. https://doi.org/10.1016/j.snb.2020.128389.
  17. Setoudeh, N., Jahani, S., Kazemipour, M., Foroughi, M.M. and Nadiki, H.H. (2020), "Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance", J. Electroanal. Chem., 863, 114045-114045. https://doi.org/10.1016/j.jelechem.2020.114045.
  18. Shen, Z.D., Fan, Q.Z., Yu, Q., Wang, R., Wang, H. and Kong, X.M. (2021), "Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography", Spectrochimica Acta A, 247, 119037-119037. https://doi.org/10.1016/j.saa.2020.119037.
  19. Shi, J.L., Li, J.J., Liang, A.H. and Jiang, Z.L. (2022), "Highly catalysis MOFCe supported Ag nanoclusters coupled with specific aptamer for SERS quantitative assay of trace dopamine", Talanta, 245, 123468. https://doi.org/10.1016/j.talanta.2022.123468.
  20. Shi, P.F., Hu, H.C., Zhang, Z.Y., Xiong, G. and Zhao, B. (2015), "Heterometal-organic frameworks highly sensitive and highly selective luminescent probes to detect Iions in aqueous solutions", Chem. Commun., 51(19), 3985-3988. https://doi.org/10.1039/C4CC09081K.
  21. Shi, X.J., Liu, H.M., Zhang, M., Yang, F.Z., Li, J.S., Guo, Y.M. and Sun, X. (2021), "Ultrasensitive electrochemiluminescence aptasensor based on AuNPs@MWCNTs and Au@AgNPs for detection of profenofos residues", Sensor. Actuat. B Chem., 348, 130663. https://doi.org/10.1016/J.SNB.2021.130663.
  22. Song, Y., Xie, C.H., Wang, M.S., Liu, S., Zhang, Z.J. and Zhou, Y.B. (2019), "Rapid determination of carbendazim residues in mushrooms by immunosorbent assay", E3S Web of Conferences, 78, 2018-2023. https://doi.org/10.1051/e3sconf/20197802018.
  23. Tawfik, S.M. and Lee, Y.I. (2021), "Metal-organic framework films functionalized with nonionic conjugated poly-thiophenes for visual detection of PAHs", Adv. Nano Res., 11(5), 521-536. https://doi.org/10.12989/ANR.2021.11.5.521.
  24. Tayyaba, I., Xu, Y., Ayesha, A., Ghazala, A., Li, G., Muhammad, A., Xiao, F. and Liu, H.F. (2021) "Tuning Electrocatalytic Aptitude by Incorporating α-MnO2 Nanorods in Cu-MOF/rGO/CuO hybrids: Electrochemical sensing of resorcinol for practical applications", ACS Appl. Mater. Interf., 13(27), 31462-31473. https://doi.org/10.1021/acsami.1c07067.
  25. Veisi, H., Abrifam, M., Kamangar, S.A., Pirhayati, M., Saremi, S.G., Noroozi, M., Tamoradi, T. and Karmakar, (2021), "B. Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki-Miyaura coupling", Sci. Rep., 11(1), 21883-21883. https://doi.org/10.1038/S41598-021-00991-3.
  26. Wang, S., Su, L.T., Wang, L.M., Zhang, D.W., Shen, G.Q. and Ma, Y. (2020), "Colorimetric determination of carbendazim based on the specific recognition of aptamer and the polydiallyldimethylammonium chloride aggregation of gold nanoparticles", Spectrochimica Part A, 228, 117809. https://doi.org/10.1016/j.saa.2019.117809.
  27. Wang, Z.H., Shu, Y.Y., Li, J.J., Liang, A.H. and Jiang, Z.L. (2022), "Silver nanosol RRS aptamer assay of trace glyphosate based on gold-doped polystyrene nanocatalytic amplification", Microchem. J., 176, 107252. https://doi.org/10.1016/J.MICROC.2022.107252.
  28. Wen, G.Q., Xiao, Y., Chen, S.X., Zhang, X.H. and Jiang, Z.L. (2021), "A nanosol SERS/RRS aptamer assay of trace cobalt (II) by covalent organic framework BtPD-loaded nanogold catalytic amplification", Royal Soc. Chem., 3, 3846-3859. https://doi.org/10.1039/D1NA00208B.
  29. Wu, J.X. and Yan, B. (2017), "Eu (III)-functionalized In-MOF (In (OH)bpydc) as fluorescent probe for highly selectively sensing organic small molecules and anions especially for CHCl3 and MnO4-", J. Colloid Interf. Sci., 504, 197-205. https://doi.org/10.1016/j.jcis.2017.05.054.
  30. Wu, Z.P., Wang, M.X., Zhou, L.J., Yin, Z.L., Tan, J., Zhang, J.L. and Chen, Q.Y. (2014), "Framework-solvent interactional mechanism and effect of NMP/DMF on solvothermal synthesis of [Zn4O(BDC)3]8", Transact. Nonferrous Metals Soc. China, 24(11), 3722-3731. https://doi.org/10.1016/S1003-6326(14)63521-4.
  31. Yang, Z.C., Liu, T., Wang, W. and Zhang, L.M. (2020), "Stacked hexagonal prism of Ag@Ni-MOF-1 as functionalized SERS platform through rational integration of catalytic synthesis of dopamine-quinone at physiological pH with a biomimetic route", Chem. Commun., 56(20), 3065-3068. https://doi.org/10.1039/c9cc09145a.
  32. Yao, D.M., Li, C.N., Wang, H.L., Wen, G.Q., Liang, A.H. and Jiang, Z.L. (2020), "A new dual-mode SERS and RRS aptasensor for detecting trace organic molecules based on gold nanocluster-doped covalent-organic framework catalyst", Sensor. Actuat. B Chem., 319, 128308. https://doi.org/10.1016/j.snb.2020.128308.
  33. Yao, D.M., Li, C.N., Wen, G.Q., Liang, A.H. and Jiang, Z.L. (2020), "A highly sensitive and accurate SERS/RRS dualspectroscopic immunosensor for clenbuterol based on nitrogen/ silver-codoped carbon dots catalytic amplification-Science Direct", Talanta, 209, 120529-120538. https://doi.org/10.1016/j.talanta.2019.120529.
  34. Yao, D.M., Wen, G.Q., Gong, L.B., Li, C.N., Liang, A.H. and Jiang, Z.L. (2020), "A highly sensitive SERS and RRS coupled di-mode method for CO detection using nanogolds as catalysts and bifunctional probes", Nanomaterials, 10(3), 450-463. https://doi.org/10.3390/nano10030450.
  35. Zhai, Y., Xuan, T., Wu, Y.P., Guo, X.Y., Ying, Y., Wen, Y. and Yang, H.F. (2020), "Metal-organic-frameworks-enforced surface enhanced Raman scattering chip for elevating detection sensitivity of carbendazim in seawater", Sensor. Actuat. B Chem., 326, 128852-128857. https://doi.org/10.1016/j.snb.2020.128852.
  36. Zhao, J.H., Yuan, H.C., Hong, Q., Peng, Y.J., Li, Y. and Liu, M.H. (2014), "Determination of oxytetracycline content in duck meat using silver nanoparticle enhanced fluorescence", Opt. Precis. Eng., 22(11), 2902-2907. https://doi.org/10.3788/ope.20142211.2902.
  37. Zheng, D., Hua, X.Z., Fu, X.F., Xia, Z.Z., Zhou, Y.X., Peng, L.J., Yu, Q.W. and Peng, X.T. (2022), "Flowerlike Ni-NiO composite as magnetic solid-phase extraction sorbent for analysis of carbendazim and thiabendazole in edible vegetable oils by liquid chromatography-mass spectrometry", Food Chem., 374, 131761. https://doi.org/10.1016/j.foodchem.2021.131761.