DOI QR코드

DOI QR Code

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian (Department of Civil Engineering, Estahban Branch, Islamic Azad University) ;
  • Gholam Reza Atefatdoost (Department of Civil Engineering, Estahban Branch, Islamic Azad University) ;
  • Seyed Abbas Hosseini (Faculty of Technology and Mining, Yasouj University) ;
  • Leila Shahryari (Department of Civil Engineering, Shiraz Branch, Islamic Azad University)
  • 투고 : 2022.09.20
  • 심사 : 2023.03.31
  • 발행 : 2023.05.10

초록

This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

키워드

참고문헌

  1. ACI: 211.1-91 (2002), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, American Concrete Institute, Farmington Hills, Michigan, USA.
  2. ACI: 318-95 (1995), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan, USA.
  3. ACI:440.11-22 (2022), Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars, American Concrete Institute, Farmington Hills, Michigan, USA.
  4. ACI:544.10-21 (2021), Fiber Effect on Reducing the Permeability of Cracked Concrete Structures, American Concrete Institute, Farmington Hills, Michigan, USA.
  5. Afifi, M., Brahim, B. and Hamdy, M. (2013), "Strength and axial behavior of circular concrete columns reinforced with CFRP bars and spirals", J. Compos. Constr., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430.
  6. Afifi, M., Hamdy, M. and Brahim, B. (2014), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
  7. Ahmad, A., Khan, Q.U.Z. and Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 244, 112-123. https://doi.org/10.1016/j.compstruct.2020.112312.
  8. Essawy, A.S. and El-Hawary, M. (1998), "Strength and ductility of spirally reinforced rectangular concrete columns", Constr. Build. Mater., 12, 31-37. https://doi.org/10.1016/S0950-0618(97)00071-8.
  9. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures", Eng Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022
  10. ASTM-A370 (2011), Standard Test Method and Definitions for Mechanical Testing of Steel Product, ASTM International, West Conshohocken, PA.
  11. ASTM-A820/A820M (2011), Standard Specification for Steel Fibers for Fiber-Reinforced Concrete, ASTM International, West Conshohocken, PA.
  12. ASTM-C39/C39M-18 (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
  13. ASTM-C143 (2005), Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM International, West Conshohocken, PA.
  14. ASTM-C150/C150M-18 (2018), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA.
  15. AS 3600:2018/Amdt 2:2021 (2021), Concrete Structures, Australian Strandards J.
  16. Barros, J. and Figueiras, J.A. (1999), "Flexural behavior of SFRC: Testing and modelling", J. Mater. Civil Eng., 11, 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331).
  17. Barros, J.F. and Figueiras, J.A. (2001), "Model for the analysis of steel fibre reinforced concrete slabs on grade", Comput. Struct., 79, 97-106. https://doi.org/10.1016/S0045-7949(00)00061-4.
  18. Bayramov, F., Tasdemir C., Tasdemir M.A. (2004), "Optimisation of steel fibre reinforced concretes by means of statistical response surface method", Cement Concrete Compos., 26(6), 665-675. https://doi.org/10.1016/S0958-9465(03)00161-6.
  19. Bencardino F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2008), "Stress-strain behavior of steel fiber-reinforced concrete in compression", Mater. Civil Eng., 20, 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255).
  20. Canadian Standards Association (CSA) S806:12.R21 (2021), Design and Construction of Building Components with Fibre-Reinforced Polymers, CSA Group of CAN/CSA-S806-02.
  21. Chi, Y., Xu, L. and Yu, H.S. (2014), "Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression", J. Eng. Mech., 140, 393-405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.
  22. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng Struct, 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.
  23. Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025.
  24. Chinese Standard GB:50608 (2020), Technical Standard for Fiber Reinforced Polymer (FRP) in Construction, Chinese Standard J.
  25. Dong, M., Lokuge, W., Elchalakani, M. and Karrech, A. (2019), "Modelling glass fibre-reinforced polymer reinforced geopolymer concrete columns", Struct., 20, 813-821. https://doi.org/10.1016/j.istruc.2019.06.018.
  26. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023.
  27. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed, M.S., Mohamed, A.S. and Manalo, A. (2018a), "Behaviour and design of air-cured GFRP-reinforced geopolymer concrete square columns", Mag. Concrete Res., 71(19), 1006-1024. https://doi.org/10.1680/jmacr.17.00534.
  28. Elchalakani, M., Karrech, A., Dong, M., Ali, M.S.M. and Yang, B. (2018b), "Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading", Struct., 14, 273-289. https://doi.org/10.1016/j.istruc.2018.04.001.
  29. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed, M.S.A. and Yang, B. (2019), "Experimental investigation of rectangular air-cured geopolymer concrete columns reinforced with GFRP bars and stirrups", J. Compos. Constr., 23(3), 04019011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000938.
  30. Elchalakani, M., Dong, M., Karrech, A., Mohamed Ali, M.S. and Huo, J.S. (2020), "Circular concrete columns and beams reinforced with GFRP bars and spirals under axial, eccentric, and flexural loading", J. Compos. Constr., 24(3), 04020008. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001008.
  31. Elmessalami, N., El Refai, A. and Abed, F. (2019), "Fiber-reinforced polymers bars for compression reinforcement: A promising alternative to steel bars", Constr. Build. Mater., 209(10), 725-737. https://doi.org/10.1016/j.conbuildmat.2019.03.105.
  32. Elshamandy, M.G., Farghaly, A. and Sabry Benmokrane, B. (2018), "Experimental behavior of glass fiber-reinforced polymer-reinforced concrete columns under lateral cyclic load", ACI Struct. J., 115(2), 337-349. https://doi.org/10.14359/51700985
  33. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  34. Hadhood, A., Hamdy, M. and Brahim, B. (2017a), "Strength of circular HSC columns reinforced internally with carbon-fiber-reinforced polymer bars under axial and eccentric loads", Constr. Build. Mater., 141, 366-378. https://doi.org/10.1016/j.conbuildmat.2017.02.117.
  35. Hadhood, A., Hamdy, M., Brahim, B. and Faouzi, G. (2017b), "Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads", Compos. Part B: Eng., 114, 223-236. https://doi.org/10.1016/j.compositesb.2017.01.063.
  36. Hadi, M., Hasan, H. and Sheikh, M.D. (2017), "Experimental investigation of circular high-strength concrete columns reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions", J. Compos. Constr., 21(4), 04017005. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000784.
  37. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", Compos. Constr., 20(4), 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  38. Hamdy, M., Afifi, M. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  39. Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2016), "Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity", Eng. Struct., 125, 1-14. https://doi.org/10.1016/j.engstruct.2016.06.047.
  40. Hasan, H., Sheikh, M.D. and Hadi, M. (2017), "Performance evaluation of high strength concrete and steel fibre high strength concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 134, 297-310. https://doi.org/10.1016/j.conbuildmat.2016.12.124.
  41. Hayder, A.H., Hogr, K., Hussam, A.G., Aidan, M.C., Neaz, Sh.M. and Muhammad, N.S.H. (2022), "Performance evaluation of normal-and high-strength concrete column specimens reinforced longitudinally with different ratios of GFRP bars", Struct., 47, 1428-1440. https://doi.org/10.1016/j.istruc.2022.11.056.
  42. Huang, Z. and Liew, J.Y.R. (2015), "Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultralightweight cement composite", Constr. Build. Mater., 95, 922-938. https://doi.org/10.1016/j.conbuildmat.2015.07.134.
  43. Ibrahim, A.M.A., Fahmy, M.F.M. and Wu, Z. (2016), "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading", Compos. Struct., 143, 33-52. https://doi.org/10.1016/j.compstruct.2016.01.014.
  44. Karim, H., Sheikh, M.N. and Hadi, M.N. (2016), "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  45. Kaufmann, W., Amin, A., Beck, A. and Lee, M. (2019), "Shear transfer across cracks in steel fibre reinforced concrete", Eng. Struct., 186, 508-524. https://doi.org/10.1016/j.engstruct.2019.02.027.
  46. Khorramian, K. and Sadeghian, P. (2017), "Experimental and analytical behavior of short concrete columns reinforced with GFRP bars under eccentric loading", Eng. Struct., 151, 761-773. https://doi.org/10.1016/j.engstruct.2017.08.064.
  47. Lawler, J.S., Zampini, D. and Shah, S.P. (2002), "Permeability of cracked hybrid fiber-reinforced mortar under load", ACI Mater. J., 99, 379-385.
  48. Lok, T.S. and Xiao, J.R. (1999), "Flexural strength assessment of steel fiber-reinforced concrete", J. Mater. Civil Eng., 11(3), 188-196. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(188).
  49. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  50. Luca, A., Matta, F. and Nanni, A. (2010), "Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107, 589-596.
  51. Maranan, G., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars", Eng. Struct., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036.
  52. Maranan, G.B., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars", Eng. Struct., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036.
  53. Marara, K., Erenb, O. and Yitmena, I. (2011), "Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC)", Mater. Res., 14(2), 239-247. https://doi.org/10.1590/S1516-14392011005000042.
  54. Mehmet, E.G., Abdulkadir, C. and Sarwar, H.M. (2021), "Crack pattern and failure mode prediction of SFRC corbels: Experimental and numerical study", Comput. Concrete, 28(5), 507-519. https://doi.org/10.12989/cac.2021.28.5.507.
  55. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  56. Nanni, A., De Luca, A. and Zadeh, H.J. (2014), Reinforced Concrete with FRP Bars: Mechanics and Design, CRC Press.
  57. O zcan, D.M., Bayraktar, A., Sahin, A., Haktanir, T. and Turker, T. (2009), "Experimental and finite element analysis on the steel fiber-reinforced concrete (SFRC) beams ultimate behavior", Constr Build Mater, 23, 1064-1077. https://doi.org/10.1016/j.conbuildmat.2008.05.010.
  58. Raza, A. and Khan, Q.U.Z. (2020), "Experimental and theoretical study of GFRP hoops and spirals in hybrid fiber reinforced concrete short columns", Mater. Struct., 53(6), 139. https://doi.org/10.1617/s11527-020-01575-9.
  59. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019, Article ID 1745341. https://doi.org/10.1155/2019/1745341.
  60. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2021), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461.
  61. Sajedi, F. and Shafieinia, M. (2019), "Evaluation and comparison of GFRP casing and CFRP sheets application on the behavior of circular reinforced concrete column made of high-strength concrete", Asian J. Civil Eng., 20(8), 1153-1161. https://doi.org/10.1007/s42107-019-00172-8.
  62. Saif, A., Moahmmed, K.D. and Suraparb, K. (2022), "Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars", Struct. Eng. Mech., 84(2), 143-154. https://doi.org/10.12989/sem.2022.84.2.143.
  63. Shan, L. and Zhang, L. (2014), "Experimental study on mechanical properties of steel and polypropylene fiberreinforced concrete", Appl. Mech. Mater., 584, 1355-1361. https://doi.org/10.4028/www.scientific.net/AMM.584-586.1355.
  64. Thomas, A.H., Chris, P. and Lawrence, D.R. (2016), "Experimental evaluation of slender high-strength concrete columns with GFRP and hybrid reinforcement", J. Compos. Constr., 20(6), 04016050. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000709.
  65. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Strength model for concrete columns reinforced with fiber-reinforced polymer bars and ties", ACI Struct. J., 111(4), 789-798. https://doi.org/10.14359/51686630
  66. Tobbi, H., Benmokrane, B. and Farghaly, A. (2013), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375. https://doi.org/10.14359/51686528.
  67. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4), 551.
  68. Triantafyllou, G., Rousakis, T.C. and Karabinis, A.I. (2017), "Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates", Compos. B Eng., 112, 125-136. https://doi.org/10.1016/j.compositesb.2016.12.032.
  69. Nghia Nguyen, T., Le, T.C., Khatir, S. and Abdel Wahab, M. (2021), "A novel approach to the complete stress strain curve for plastically damaged concrete under monotonic and cyclic loads", Comput. Concrete, 28(1), 39-53. https://doi.org/10.12989/cac.2021.28.1.039.
  70. Wang, J. and Chen, Y. (2006), ABAQUS Application in Civil Engineering, Zhejiang University Press, China.
  71. Wang, Q.S., Li, X.B., Zhao, G.Y., Shao, P. and Yao, J.R. (2008), "Experiment on mechanical properties of steel fiber reinforced concrete and application in deep underground engineering", J. China Univ. Min. Technol., 18, 64-81. https://doi.org/10.1016/S1006-1266(08)60014-0
  72. Wang, X., Fan, F., Lai, J. and Xie, Y. (2021), "Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining", Struct., 34, 1080-1098. https://doi.org/10.1016/j.istruc.2021.07.086.
  73. Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
  74. Xue, W., Peng, F. and Fang, Z. (2018), "Behavior and design of slender rectangular concrete columns longitudinally reinforced with fiber-reinforced polymer bars", ACI Struct. J., 115(2), 311-322. https://doi.org/10.14359/51701131
  75. Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
  76. Youssef, J. and Hadi, M.N. (2017), "Axial load-bending moment diagrams of GFRP reinforced columns and GFRP encased square columns", Constr. Build. Mater., 135, 550-564. https://doi.org/10.1016/j.conbuildmat.2016.12.125.
  77. Liu, Y., Zhang, H.T., Tafsirojjaman, T., Dogar, A.U.R., AlAjarmeh, O., Yue, Q.R. and Manalo, A. (2022), "A novel technique to improve the compressive strength and ductility of glass fiber reinforced polymer (GFRP) composite bars", Constr. Build. Mater., 326, 126782. https://doi.org/10.1016/j.conbuildmat.2022.126782.
  78. Yue, Q.R., Ye, L.P. and Li, L. (2010), Technical Code for Infrastructure Application of FRP Composites, China Planning Press, Beijing.
  79. Ye, Y.Y., Zhuge, Y., Smith, S.T., Zeng, J.J. and Bai, Y.L. (2022), "Behavior of GFRP-RC columns under axial compression: Assessment of existing models and a new axial load-strain model", Build. Eng., 47, 103782. https://doi.org/10.1016/j.jobe.2021.103782.
  80. Zhang, X. and Deng, Z. (2018), "Experimental study and theoretical analysis on axial compressive behavior of concrete columns reinforced with GFRP bars and PVA fibers", Constr. Build. Mater., 172, 519-532. https://doi.org/10.1016/j.conbuildmat.2018.03.237.