DOI QR코드

DOI QR Code

Thermal bending analysis of functionally graded thick sandwich plates including stretching effect

  • Mohammed Sid Ahmed Houari (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Aicha Bessaim (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Smain Bezzina (Mechanical Engineering Department, King Abdulaziz University) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2022.12.30
  • 심사 : 2023.03.27
  • 발행 : 2023.05.10

초록

The main objective of this research work is to present analytical solutions for the thermoelastic bending analysis of sandwich plates made of functionally graded materials with an arbitrary gradient. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The transverse shear and normal strain and stress effects on thermoelastic bending of such sandwich plates are considered. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The results of the shear deformation theories are compared together. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated.

키워드

과제정보

This research work was funded by Institutional Fund Projects under grand no. (IFPIP: 842-305-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

참고문헌

  1. Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Bas. Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2021.1999263.
  2. Boley, B.A. and Weiner, J.H. (2012), Theory of Thermal Stresses, Courier Corporation.
  3. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.
  4. Edfawy, E. (2016), "Thermal stresses in a non-homogeneous orthotropic infinite cylinder", Struct. Eng. Mech., 59(5), 841-852. https://doi.org/10.12989/sem.2016.59.5.841
  5. Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. https://doi.org/10.1016/j.finel.2012.11.005.
  6. Esen, I. (2015), "A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory", Lat. Am. J. Solid. Struct., 12, 808-830. https://doi.org/10.1590/1679-78251525.
  7. Esen, I. and Ozmen, R. (2022a), "Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates", Mech. Bas. Des. Struct. Mach., 1-38. https://doi.org/10.1080/15397734.2022.2152045.
  8. Esen, I. and Ozmen, R. (2022b), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
  9. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  10. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  11. Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
  12. Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551.
  13. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  14. Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029.
  15. Khdeir, A.A. and Reddy, J.N. (1991), "Thermal stresses and deflections of cross-ply laminated plates using refined plate theories", J. Therm. Stress., 14(4), 419-438. https://doi.org/10.1080/01495739108927077.
  16. Lata, P., Kaur, I. and Singh, K. (2021), "Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer", Steel Compos. Struct., 40(6), 829-838. https://doi.org/10.12989/scs.2021.40.6.829.
  17. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
  18. Ma, W.L., Jiang, Z.C., Lee, K.Y. and Li, X.F. (2020), "A refined beam theory for bending and vibration of functionally graded tube-beams", Compos. Struct., 236, 111878. https://doi.org/10.1016/j.compstruct.2020.111878.
  19. Noda, N. (1999), "Thermal stresses in functionally graded materials", J. Therm. Stress., 22(4-5), 477-512. https://doi.org/10.1080/014957399280841.
  20. Nowacki, W. (1982), Thermoelasticity Pergamon.
  21. Peng, X.L., Zhang, L., Yang, Z.X., Feng, Z.Y., Zhao, B. and Li, X.F. (2020), "Effect of the gradient on the deflection of functionally graded microcantilever beams with surface stress", Acta Mechanica, 231(10), 4185-4198. https://doi.org/10.1007/s00707-020-02759-8.
  22. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752 https://doi.org/10.1115/1.3167719.
  23. Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984.
  24. Shen, H.S. (2005), "Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings", Int. J. Solid. Struct., 42(23), 6101-6121. https://doi.org/10.1016/j.ijsolstr.2005.03.042.
  25. Sun, S.L., Zhang, X.Y. and Li, X.F. (2023), "A consistent shear beam theory for free vibration of functionally graded beams based on physical neutral plane", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2023.2185709.
  26. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, Vol. 2, McGraw-hill, New York.
  27. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  28. Wu, C.H. and Tauchert, T.R. (1980), "Thermoelastic analysis of laminated plates. I: Symmetric specially orthotropic laminates", J. Therm. Stress., 3(2), 247-259. https://doi.org/10.1080/01495738008926966.
  29. Wu, C.H. and Tauchert, T.R. (1980), "Thermoelastic analysts of laminated plates. 2: Antisymmetric cross-ply and angle-ply laminates", J. Therm. Stress., 3(3), 365-378. https://doi.org/10.1080/01495738008926975.
  30. Zenkour, A.M. (2004), "Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory", Acta Mechanica, 171(3), 171-187. https://doi.org/10.1007/s00707-004-0145-7.