Acknowledgement
This research work was funded by Institutional Fund Projects under grand no. (IFPIP: 842-305-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
References
- Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Bas. Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2021.1999263.
- Boley, B.A. and Weiner, J.H. (2012), Theory of Thermal Stresses, Courier Corporation.
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.
- Edfawy, E. (2016), "Thermal stresses in a non-homogeneous orthotropic infinite cylinder", Struct. Eng. Mech., 59(5), 841-852. https://doi.org/10.12989/sem.2016.59.5.841
- Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. https://doi.org/10.1016/j.finel.2012.11.005.
- Esen, I. (2015), "A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory", Lat. Am. J. Solid. Struct., 12, 808-830. https://doi.org/10.1590/1679-78251525.
- Esen, I. and Ozmen, R. (2022a), "Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates", Mech. Bas. Des. Struct. Mach., 1-38. https://doi.org/10.1080/15397734.2022.2152045.
- Esen, I. and Ozmen, R. (2022b), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
- Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
- Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029.
- Khdeir, A.A. and Reddy, J.N. (1991), "Thermal stresses and deflections of cross-ply laminated plates using refined plate theories", J. Therm. Stress., 14(4), 419-438. https://doi.org/10.1080/01495739108927077.
- Lata, P., Kaur, I. and Singh, K. (2021), "Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer", Steel Compos. Struct., 40(6), 829-838. https://doi.org/10.12989/scs.2021.40.6.829.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
- Ma, W.L., Jiang, Z.C., Lee, K.Y. and Li, X.F. (2020), "A refined beam theory for bending and vibration of functionally graded tube-beams", Compos. Struct., 236, 111878. https://doi.org/10.1016/j.compstruct.2020.111878.
- Noda, N. (1999), "Thermal stresses in functionally graded materials", J. Therm. Stress., 22(4-5), 477-512. https://doi.org/10.1080/014957399280841.
- Nowacki, W. (1982), Thermoelasticity Pergamon.
- Peng, X.L., Zhang, L., Yang, Z.X., Feng, Z.Y., Zhao, B. and Li, X.F. (2020), "Effect of the gradient on the deflection of functionally graded microcantilever beams with surface stress", Acta Mechanica, 231(10), 4185-4198. https://doi.org/10.1007/s00707-020-02759-8.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752 https://doi.org/10.1115/1.3167719.
- Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984.
- Shen, H.S. (2005), "Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings", Int. J. Solid. Struct., 42(23), 6101-6121. https://doi.org/10.1016/j.ijsolstr.2005.03.042.
- Sun, S.L., Zhang, X.Y. and Li, X.F. (2023), "A consistent shear beam theory for free vibration of functionally graded beams based on physical neutral plane", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2023.2185709.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, Vol. 2, McGraw-hill, New York.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Wu, C.H. and Tauchert, T.R. (1980), "Thermoelastic analysis of laminated plates. I: Symmetric specially orthotropic laminates", J. Therm. Stress., 3(2), 247-259. https://doi.org/10.1080/01495738008926966.
- Wu, C.H. and Tauchert, T.R. (1980), "Thermoelastic analysts of laminated plates. 2: Antisymmetric cross-ply and angle-ply laminates", J. Therm. Stress., 3(3), 365-378. https://doi.org/10.1080/01495738008926975.
- Zenkour, A.M. (2004), "Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory", Acta Mechanica, 171(3), 171-187. https://doi.org/10.1007/s00707-004-0145-7.