과제정보
The authors would like to thank the anonymous reviewers for their contributions to the manuscript's improvement.
참고문헌
- Aldosary, M., Wang, J. and Li, C. (2018), "Structural reliability and stochastic finite element methods: State-of-the-art review and evidence-based comparison", Eng. Comput., 35(6), 2165-2214. https://doi.org/10.1108/EC-04-2018-0157.
- Aslett, L.J., Nagapetyan, T. and Vollmer, S.J. (2017), "Multilevel Monte Carlo for reliability theory", Reliab. Eng. Syst. Saf., 165, 188-196. https://doi.org/10.1016/j.ress.2017.03.003.
- Borri, A. and Speranzini, E. (1997), "Structural reliability analysis using a standard deterministic finite element code", Struct. Saf., 19(4), 361-382. https://doi.org/10.1016/S0167-4730(97)00017-9.
- Cao, R., Sun, Z., Wang, J. and Guo, F. (2021), "An efficient reliability analysis strategy for low failure probability problems", Struct. Eng. Mech., 78(2), 209-218. https://doi.org/10.12989/sem.2021.78.2.209.
- Chakraborty, S. and Dey, S.S. (2000), "Stochastic finite element simulation of uncertain structures subjected to earthquake", Shock Vib., 7(5), 309-320. https://doi.org/10.1155/2000/730364
- Council, B.S.S. (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Report FEMA-356, Washington, DC.
- da S Jr, C.A. and Beck, A.T. (2015), "New method for efficient Monte Carlo-Neumann solution of linear stochastic systems", Probab. Eng. Mech., 40, 90-96. https://doi.org/10.1016/j.probengmech.2015.02.006.
- Der Kiureghian, A. and Ke, J.B. (1988), "The stochastic finite element method in structural reliability", Probab. Eng. Mech., 3(2), 83-91. https://doi.org/10.1016/0266-8920(88)90019-7.
- Ditlevsen, O. and Madsen, H.O. (1996), Structural Reliability Methods, Vol. 178, Wiley, New York.
- Elishakoff, I. and Liping, Z. (1993), "Random vibration of structures by the finite element method", Comput. Meth. Appl. Mech. Eng., 105(3), 359-373. https://doi.org/10.1016/0045-7825(93)90063-4.
- Garakaninezhad, A. and Bastami, M. (2019), "An evolutionary approach for structural reliability", Struct. Eng. Mech., 71(4), 329-339. https://doi.org/10.12989/sem.2019.71.4.329.
- Gasser, M. and Schueller, G.I. (1997), "Reliability-based optimization of structural systems", Math. Meth. Oper. Res., 46(3), 287-307. https://doi.org/10.1007/BF01194858.
- Hachem, M.M., Moehle, J.P. and Mahin, S.A. (2003), "Performance of circular reinforced concrete bridge columns under bidirectional earthquake loading", Pacific Earthquake Engineering Research Center, Berkeley, CA.
- Igusa, T. and Der Kiureghian, A. (1988), "Response of uncertain systems to stochastic excitation", J. Eng. Mech., 114(5), 812-832. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:5(812).
- Kaminski, M. (2009), "Perturbation-based stochastic finite element method using polynomial response function for the elastic beams", Mech. Res. Commun., 36(3), 381-390. https://doi.org/10.1016/j.mechrescom.2008.11.001.
- Keshtegar, B. and Meng, Z. (2017), "A hybrid relaxed first-order reliability method for efficient structural reliability analysis", Struct. Saf., 66, 84-93. https://doi.org/10.1016/j.strusafe.2017.02.005.
- Lee, G.Y. (2020), "A natural frequency sensitivity based stabilization in spectral stochastic finite element method for frequency response analysis", Struct. Eng. Mech., 75(3), 311-325. https://doi.org/10.12989/sem.2020.75.3.311.
- Li, C.C. and Der Kiureghian, A. (1993), "Optimal discretization of random fields", J. Eng. Mech., 119(6), 1136-1154. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136).
- Li, D., Zheng, Z.L., Yang, R. and Zhang, P. (2018), "Analytical solutions for stochastic vibration of orthotropic membrane under random impact load", Mater., 11(7), 1231. https://doi.org/10.3390/ma11071231.
- Liu, P.L. and Liu, K.G. (1993), "Selection of random field mesh in finite element reliability analysis", J. Eng. Mech., 119(4), 667-680. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:4(667).
- Liu, Z., Ruan, X., Liu, Z. and Lu, H. (2019), "Probability density evolution analysis of stochastic nonlinear structure under nonstationary ground motions", Struct. Infrastr. Eng., 15(8), 1049-1059. https://doi.org/10.1080/15732479.2019.1599963.
- Lubell, A.S., Prion, H.G., Ventura, C.E. and Rezai, M. (2000), "Unstiffened steel plate shear wall performance under cyclic loading", J. Struct. Eng., 126(4), 453-460. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(453).
- Mahadevan, S. and Haldar, A. (1991), "Practical random field discretization in stochastic finite element analysis", Struct. Saf., 9(4), 283-304. https://doi.org/10.1016/0167-4730(91)90050-J.
- Manjuprasad, M. and Manohar, C.S. (2007), "Adaptive random field mesh refinements in stochastic finite element reliability analysis of structures", Comput. Model. Eng. Sci., 19(1), 23.
- Mustafa, A. and Takewaki, I. (2010), "Deterministic and probabilistic representation of near-field pulse-like ground motion", Soil Dyn. Earthq. Eng., 30(5), 412-422. https://doi.org/10.1016/j.soildyn.2009.12.013.
- Ni, P., Li, J., Hao, H., Yan, W., Du, X. and Zhou, H. (2020), "Reliability analysis and design optimization of nonlinear structures", Reliab. Eng. Syst. Saf., 198, 106860. https://doi.org/10.1016/j.ress.2020.106860.
- Rezaeian, S. (2010), "Stochastic modeling and simulation of ground motions for performance-based earthquake engineering", University of California, Berkeley.
- Rong, B., Rui, X. and Tao, L. (2012), "Perturbation finite element transfer matrix method for random eigenvalue problems of uncertain structures", J. Appl. Mech., 79(2), 1. https://doi.org/10.1115/1.4005574.
- Salimi, M.R. and Yazdani, A. (2018), "Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads", Struct. Eng. Mech., 66(1), 75-84. https://doi.org/10.12989/sem.2018.66.1.075.
- Sudret, B. and Der Kiureghian, A. (2000), "Stochastic finite element methods and reliability: A state-of-the-art report", Department of Civil and Environmental Engineering, University of California, Berkeley, CA.
- Sudret, B. and Der Kiureghian, A. (2002), "Comparison of finite element reliability methods", Probab. Eng. Mech., 17(4), 337-348. https://doi.org/10.1016/S0266-8920(02)00031-0.
- Takewaki, I. and Ben-Haim, Y. (2005), "Info-gap robust design with load and model uncertainties", J. Sound Vib., 288(3), 551-570. https://doi.org/10.1016/j.jsv.2005.07.005.
- Udoeyo, F.F. and Ugbem, P.I. (1995), "Dimensional variations in reinforced-concrete members", J. Struct. Eng., 121(12), 1865-1867. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1865).
- Vanmarcke, E. (2010), Random Fields: Analysis and Synthesis, World Scientific.
- Vanmarcke, E. and Grigoriu, M. (1983), "Stochastic finite element analysis of simple beams", J. Eng. Mech., 109(5), 1203-1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203).
- Vlachos, C. (2016), "Stochastic characterization and simulation of ground motions based on earthquake scenarios", Columbia University.
- Warburton, G.B. (1995), Dynamics of Structures, McGraw-Hill, New York.
- Wu, F., Yao, L.Y., Hu, M. and He, Z.C. (2017), "A stochastic perturbation edge-based smoothed finite element method for the analysis of uncertain structural-acoustics problems with random variables", Eng. Anal. Bound. Elem., 80, 116-126. https://doi.org/10.1016/j.enganabound.2017.03.008.
- Xia, B. and Yu, D. (2013), "Response probability analysis of random acoustic field based on perturbation stochastic method and change-of-variable technique", J. Vib. Acoust, 135(5), 1. https://doi.org/10.1115/1.4024853.
- Xia, B., Yu, D. and Liu, J. (2014), "Transformed perturbation stochastic finite element method for static response analysis of stochastic structures", Finite Elem. Anal. Des., 79, 9-21. https://doi.org/10.1016/j.finel.2013.10.003.
- Xue, Q., Wu, C.W., Chen, C.C. and Chen, K.C. (2008), "The draft code for performance-based seismic design of buildings in Taiwan", Eng. Struct., 30(6), 1535-1547. https://doi.org/10.1016/j.engstruct.2007.10.002.
- Yan, S. and Guo, L. (2015), "Calculation of scale of fluctuation and variance reduction function", Trans. Tianjin Univ., 21(1), 41-49. https://doi.org/10.1007/s12209-015-2298-y.
- Yang, M., Zhang, D. and Han, X. (2020), "New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization", Comput. Meth. Appl. Mech. Eng., 366, 113018. https://doi.org/10.1016/j.cma.2020.113018.
- Yang, Y., Peng, J., Zhang, J. and Cai, C.S. (2018), "A new method for estimating the scale of fluctuation in reliability assessment of reinforced concrete structures considering spatial variability", Adv. Struct. Eng., 21(13), 1951-1962. https://doi.org/10.1177/1369433218760891.
- Yazdani, A. and Eftekhari, S.N. (2015), "The effect of structural properties and ground motion variables on the global response of structural systems", Civil Eng. Environ. Syst., 32(3), 216-229. https://doi.org/10.1080/10286608.2015.1046032.
- Yazdani, A. and Takada, T. (2011), "Probabilistic study of the influence of ground motion variables on response spectra", Struct. Eng. Mech., 39(6), 877-893. https://doi.org/10.12989/sem.2011.39.6.877.
- Zhang, D., Zhang, J., Yang, M., Wang, R. and Wu, Z. (2022), "An enhanced finite step length method for structural reliability analysis and reliability-based design optimization", Struct. Multidisc. Optim., 65(8), 231. https://doi.org/10.1007/s00158-022-03294-x.
- Zhang, Y., Sun, Z., Yan, Y., Yu, Z. and Wang, J. (2020), "A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response", Struct. Eng. Mech., 75(6), 771-784. https://doi.org/10.12989/sem.2020.75.6.771.
- Zhao, Y., Deng, Z. and Han, Y. (2020), "Dynamic response analysis of structure with hybrid random and interval uncertainties", Chaos Solit. Fract., 131, 109495. https://doi.org/10.1016/j.chaos.2019.109495.