DOI QR코드

DOI QR Code

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah (Smart Structures Laboratory, Faculty of Science & Technology, Civil Engineering Department, University of Ain Temouchent) ;
  • Zakaria Belabed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Khaled Amara (Engineering and Sustainable Development Laboratory, University of Ain Temouchent) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abdelmoumen A. Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, University of Sidi Bel Abbes) ;
  • Fouad Bourada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • 투고 : 2021.08.27
  • 심사 : 2023.02.27
  • 발행 : 2023.05.10

초록

This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

키워드

참고문헌

  1. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Structs., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  2. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  3. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
  4. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.
  5. Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Structs., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  7. Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.
  8. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., 7(4), 279-294. https://doi.org/10.12989/anr.2019.7.4.277.
  9. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Structs., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  10. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  11. Chen, X., Chen, L. and Lu, Y. (2021), "Imperfection sensitivity of nonlinear primary resonance behavior in bi-directional functionally graded porous material beam", Compos. Structs., 271, 114142. https://doi.org/10.1016/j.compstruct.2021.114142.
  12. Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 38(Suppl 1), 489-521. https://doi.org/10.1007/s00366-020-01168-8.
  13. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020a), "A threedimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Structs., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  14. Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0.
  15. Derikvand, M., Farhatnia, F. and Hodges, D.H. (2021), "Functionally graded thick sandwich beams with porous core: Buckling analysis via differential transform method", Mech. Base. Des. Struct. Mach., 1-28. https://doi.org/10.1080/15397734.2021.1931309.
  16. Dhatt, G., Lefrancois, E. and Touzot, G. (2012), Finite Element Method, ISTE Ltd and John Wiley & Sons Inc.
  17. Ebrahimi, F. and Dabbagh, A. (2019), "A novel porosity-based homogenization scheme for propagation of waves in axiallyexcited FG nanobeams", Adv. Nano Res., 7(6), 379-390. https://doi.org/10.12989/anr.2019.7.6.379.
  18. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut., 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
  19. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  20. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.
  21. Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined Quasi3D theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  22. Fang, W., Yu, T., Van Lich, L. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Structs., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
  23. Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
  24. Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.
  25. Gao, K., Li, R. and Yang, J. (2019), "Dynamic characteristics of functionally graded porous beams with interval material properties", Eng. Struct., 197, 109441. https://doi.org/10.1016/j.engstruct.2019.109441.
  26. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  27. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  28. Jamshidi, M., Arghavani, J. and Maboudi, G. (2019), "Postbuckling optimization of two-dimensional functionally graded porous beams", Int. J. Mech. Mater. Des., 15(4), 801-815. https://doi.org/10.1007/s10999-019-09443-3.
  29. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 37, 3569-3589. https://doi.org/10.1007/s00366-020-01018-7.
  30. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  31. Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027.
  32. Liu, T., Guessasma, S., Zhu, J., Zhang, W. and Belhabib, S. (2018), "Functionally graded materials from topology optimisation and stereolithography", Eur. Polym. J., 108, 199-211. https://doi.org/10.1016/j.eurpolymj.2018.08.038.
  33. Liu, Y., Su, S., Huang, H. and Liang, Y. (2019), "Thermalmechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane", Compos. Part B: Eng., 168, 236-242. https://doi.org/10.1016/j.compositesb.2018.12.063.
  34. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  35. Madenci, E. (2021a), "Free vibration and static analyses of metalceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  36. Madenci, E. (2021b), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. http://doi.org/10.12989/anr.2021.11.2.157.
  37. Madenci, E. and Gulcu, S. (2020b), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  38. Madenci, E. and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenom., 267, 35-39. https://doi.org/10.4028/www.scientific.net/SSP.267.35.
  39. Madenci, E. and O zutok, A. (2020a), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. http://doi.org/10.12989/sem.2020.73.1.097.
  40. Mehala, T., Belabed, Z., Tounsi, A. and Beg, O.A. (2018). "Investigation of influence of homogenization models on stability and dynamic of FGM plates on elastic foundations", Geomech. Eng., 16(3), 257-271. http://doi.org/10.12989/gae.2018.16.3.257.
  41. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  42. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A. (2020), "Porosity effects on postbuckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  43. Mirjavadi, S.S., Mohasel Afshari, B., Khezel, M., Shafiei, N., Rabby, S. and Kordnejad, M. (2018), "Nonlinear vibration and buckling of functionally graded porous nanoscaled beams", J. Brazil. Soc. Mech. Sci. Eng., 40(7). https://doi.org/10.1007/s40430-018-1272-8.
  44. Nguyen, T.K., Truong-Phong Nguyen, T., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B: Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  45. Noori, A.R., Aslan, T.A. and Temel, B. (2021), "Dynamic analysis of functionally graded porous beams using complementary functions method in the laplace domain", Compos. Struct., 256, 113094. https://doi.org/10.1016/j.compstruct.2020.113094.
  46. Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
  47. Punera, D. and Kant, T. (2019), "A critical review of stress and vibration analyses of functionally graded shell structures", Compos. Struct., 210, 787-809. https://doi.org/10.1016/j.compstruct.2018.11.084.
  48. Qin, B., Zhong, R., Wang, Q. and Zhao, X. (2020), "A Jacobi-Ritz approach for FGP beams with arbitrary boundary conditions based on a higher-order shear deformation theory", Compos. Struct., 247, 112435. https://doi.org/10.1016/j.compstruct.2020.112435.
  49. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press.
  50. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
  51. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  52. Slimani, O., Belabed, Z., Hammadi, F., Taibi, N. and Tounsi, A. (2021), "A new shear deformation shell theory for free vibration analysis of FG sandwich shells", Struct. Eng. Mech., 78(6), 739-753. https://doi.org/10.12989/sem.2021.78.6.739.
  53. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W. and Arwade, S.R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res., 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028.
  54. Vinyas, M., Harursampath, D. and Kattimani, S.C. (2021), "On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electromagnetic conditions using higher order finite element methods", Def. Technol., 17(1), 287-303. https://doi.org/10.1016/j.dt.2020.03.012.
  55. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  56. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  57. Wattanasakulpong, N., Chaikittiratana, A. and Pornpeerakeat, S. (2018), "Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory", Acta Mechanica Sinica, 34(6), 1124-1135. https://doi.org/10.1007/s10409-018-0770-3.
  58. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
  59. Wu, H., Yang, J. and Kitipornchai, S. (2020), "Mechanical analysis of functionally graded porous structures: A review", Int. J. Struct. Stab. Dyn., 20(13), 2041015. https://doi.org/10.1142/s0219455420410151.
  60. Xiao, W.S., Gao, Y. and Zhu, H. (2018), "Buckling and postbuckling of magneto-electro-thermo-elastic functionally graded porous nanobeams", Microsyst. Technol., 25(6), 2451-2470. https://doi.org/10.1007/s00542-018-4145-2.
  61. Xu, Z., Zhang, Z., Wang, J., Chen, X. and Huang, Q. (2020), "Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT", Thin Wall. Struct., 157, 107151. https://doi.org/10.1016/j.tws.2020.107151.
  62. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  63. Zahedinejad, P., Zhang, C., Zhang, H. and Ju, S. (2020), "A comprehensive review on vibration analysis of functionally graded beams", Int. J. Struct. Stab. Dyn., 20(04), 2030002. https://doi.org/10.1142/s0219455420300025.
  64. Zhao, C.Y. (2012), "Review on thermal transport in high porosity cellular metal foams with open cells", Int. J. Heat Mass Transf., 55(13-14), 3618-3632. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017.
  65. Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F. and Shuai, C. (2019), "A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams", Compos Part B: Eng., 165, 155-166. https://doi.org/10.1016/j.compositesb.2018.11.080.
  66. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B-Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.